scholarly journals SYSTEMATIC ERRORS IN LOW-LATENCY GRAVITATIONAL WAVE PARAMETER ESTIMATION IMPACT ELECTROMAGNETIC FOLLOW-UP OBSERVATIONS

2016 ◽  
Vol 820 (1) ◽  
pp. 7 ◽  
Author(s):  
Tyson B. Littenberg ◽  
Ben Farr ◽  
Scott Coughlin ◽  
Vicky Kalogera
2013 ◽  
Vol 87 (12) ◽  
Author(s):  
Priscilla Canizares ◽  
Scott E. Field ◽  
Jonathan R. Gair ◽  
Manuel Tiglio

Author(s):  
Hongyu Shen ◽  
Eliu Huerta ◽  
Eamonn O’Shea ◽  
Prayush Kumar ◽  
Zhizhen Zhao

Abstract We introduce deep learning models to estimate the masses of the binary components of black hole mergers, (m1, m2), and three astrophysical properties of the post-merger compact remnant, namely, the final spin, af, and the frequency and damping time of the ringdown oscillations of the fundamental (l=m=2) bar mode, (ωR, ωI). Our neural networks combine a modified WaveNet architecture with contrastive learning and normalizing flow. We validate these models against a Gaussian conjugate prior family whose posterior distribution is described by a closed analytical expression. Upon confirming that our models produce statistically consistent results, we used them to estimate the astrophysical parameters (m1, m2, af, ωR, ωI) of five binary black holes: GW150914, GW170104, GW170814, GW190521 and GW190630. We use PyCBC Inference to directly compare traditional Bayesian methodologies for parameter estimation with our deep learning based posterior distributions. Our results show that our neural network models predict posterior distributions that encode physical correlations, and that our data-driven median results and 90\% confidence intervals are similar to those produced with gravitational wave Bayesian analyses. This methodology requires a single V100 NVIDIA GPU to produce median values and posterior distributions within two milliseconds for each event. This neural network, and a tutorial for its use, are available at the Data and Learning Hub for Science.


2015 ◽  
Vol 114 (7) ◽  
Author(s):  
Priscilla Canizares ◽  
Scott E. Field ◽  
Jonathan Gair ◽  
Vivien Raymond ◽  
Rory Smith ◽  
...  

2021 ◽  
Vol 923 (2) ◽  
pp. 254
Author(s):  
Tito Dal Canton ◽  
Alexander H. Nitz ◽  
Bhooshan Gadre ◽  
Gareth S. Cabourn Davies ◽  
Verónica Villa-Ortega ◽  
...  

Abstract The third observing run of Advanced LIGO and Advanced Virgo took place between 2019 April and 2020 March and resulted in dozens of gravitational-wave candidates, many of which are now published as confident detections. A crucial requirement of the third observing run was the rapid identification and public reporting of compact binary mergers, which enabled massive follow-up observation campaigns with electromagnetic and neutrino observatories. PyCBC Live is a low-latency search for compact binary mergers based on frequency-domain matched filtering, which was used during the second and third observing runs, together with other low-latency analyses, to generate these rapid alerts from the data acquired by LIGO and Virgo. This paper describes and evaluates the improvements made to PyCBC Live after the second observing run, which defined its operation and performance during the third observing run.


Sign in / Sign up

Export Citation Format

Share Document