compact binaries
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 74)

H-INDEX

67
(FIVE YEARS 8)

2021 ◽  
Vol 923 (1) ◽  
pp. 97
Author(s):  
Yin-Jie Li ◽  
Shao-Peng Tang ◽  
Yuan-Zhu Wang ◽  
Ming-Zhe Han ◽  
Qiang Yuan ◽  
...  

Abstract We perform a hierarchical Bayesian inference to investigate the population properties of the coalescing compact binaries involving at least one neutron star (NS). With the current gravitational-wave (GW) observation data, we can rule out none of the double Gaussian, single Gaussian, and uniform NS mass distribution models, though a specific double Gaussian model inferred from the Galactic NSs is found to be slightly more preferred. The mass distribution of black holes (BHs) in the neutron star–black hole (NSBH) population is found to be similar to that in the Galactic X-ray binaries. Additionally, the ratio of the merger rate densities between NSBHs and BNSs is estimated to be ∼3:7. The spin properties of the binaries, though constrained relatively poorly, play a nontrivial role in reconstructing the mass distribution of NSs and BHs. We find that a perfectly aligned spin distribution can be ruled out, while a purely isotropic distribution of spin orientation is still allowed. To evaluate the feasibility of reliably determining the population properties of NSs in the coalescing compact binaries with upcoming GW observations, we perform simulations with a mock population. We find that with 100 detections (including BNSs and NSBHs) the mass distribution of NSs can be well determined, and the fraction of BNSs can also be accurately estimated.


Author(s):  
Mohammed Saleem ◽  
Javed Rana ◽  
V. Gayathri ◽  
Aditya Vijaykumar ◽  
Srashti Goyal ◽  
...  

Abstract The global network of gravitational-wave detectors has completed three observing runs with ∼50 detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Such additions to the network increase the number of baselines and the network SNR of GW events. These enhancements help improve the sky-localization of those events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO Global Network (LGN) in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics.


2021 ◽  
Vol 2021 (11) ◽  
pp. 048
Author(s):  
Jose Maria Ezquiaga ◽  
Wayne Hu ◽  
Macarena Lagos ◽  
Meng-Xiang Lin

Abstract We study the cosmological propagation of gravitational waves (GWs) beyond general relativity (GR) across homogeneous and isotropic backgrounds. We consider scenarios in which GWs interact with an additional tensor field and use a parametrized phenomenological approach that generically describes their coupled equations of motion. We analyze four distinct classes of derivative and non-derivative interactions: mass, friction, velocity, and chiral. We apply the WKB formalism to account for the cosmological evolution and obtain analytical solutions to these equations. We corroborate these results by analyzing numerically the propagation of a toy GW signal. We then proceed to use the analytical results to study the modified propagation of realistic GWs from merging compact binaries, assuming that the GW signal emitted is the same as in GR. We generically find that tensor interactions lead to copies of the originally emitted GW signal, each one with its own possibly modified dispersion relation. These copies can travel coherently and interfere with each other leading to a scrambled GW signal, or propagate decoherently and lead to echoes arriving at different times at the observer that could be misidentified as independent GW events. Depending on the type of tensor interaction, the detected GW signal may exhibit amplitude and phase distortions with respect to a GW waveform in GR, as well as birefringence effects. We discuss observational probes of these tensor interactions with both individual GW events, as well as population studies for both ground- and space-based detectors.


2021 ◽  
Vol 2021 (11) ◽  
pp. 032
Author(s):  
Giulia Capurri ◽  
Andrea Lapi ◽  
Carlo Baccigalupi ◽  
Lumen Boco ◽  
Giulio Scelfo ◽  
...  

Abstract We investigate the isotropic and anisotropic components of the Stochastic Gravitational Wave Background (SGWB) originated from unresolved merging compact binaries in galaxies. We base our analysis on an empirical approach to galactic astrophysics that allows to follow the evolution of individual systems. We then characterize the energy density of the SGWB as a tracer of the total matter density, in order to compute the angular power spectrum of anisotropies with the Cosmic Linear Anisotropy Solving System (CLASS) public code in full generality. We obtain predictions for the isotropic energy density and for the angular power spectrum of the SGWB anisotropies, and study the prospect for their observations with advanced Laser Interferometer Gravitational-Wave and Virgo Observatories and with the Einstein Telescope. We identify the contributions coming from different type of sources (binary black holes, binary neutron stars and black hole-neutron star) and from different redshifts. We examine in detail the spectral shape of the energy density for all types of sources, comparing the results for the two detectors. We find that the power spectrum of the SGWB anisotropies behaves like a power law on large angular scales and drops at small scales: we explain this behavior in terms of the redshift distribution of sources that contribute most to the signal, and of the sensitivities of the two detectors. Finally, we simulate a high resolution full sky map of the SGWB starting from the power spectra obtained with CLASS and including Poisson statistics and clustering properties.


2021 ◽  
Vol 127 (15) ◽  
Author(s):  
Niels Warburton ◽  
Adam Pound ◽  
Barry Wardell ◽  
Jeremy Miller ◽  
Leanne Durkan

2021 ◽  
Vol 2021 (10) ◽  
pp. 075
Author(s):  
Philippe Brax ◽  
Anne-Christine Davis ◽  
Scott Melville ◽  
Leong Khim Wong
Keyword(s):  

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Chao Zhang ◽  
Xiang Zhao ◽  
Anzhong Wang ◽  
Bin Wang ◽  
Kent Yagi ◽  
...  

2021 ◽  
Author(s):  
Maciej Dabrowny ◽  
Nicola Giacobbo ◽  
Davide Gerosa

AbstractFollowing the collapse of their cores, some of the massive binary stars that populate our Universe are expected to form merging binaries composed of black holes and neutron stars. Gravitational-wave observations of the resulting compact binaries can reveal precious details on the inner workings of the supernova mechanism and the subsequent formation of compact objects. Within the framework of the population-synthesis code mobse, we present the implementation of a new supernova model that relies on the compactness of the collapsing star. The model has two free parameters, namely the compactness threshold that separates the formation of black holes and that of neutron stars, and the fraction of the envelope that falls back onto the newly formed black holes. We compare this model extensively against other prescriptions that are commonly used in binary population synthesis. We find that the cleanest signatures of the role of the pre-supernova stellar compactness are (1) the relative formation rates of the different kinds of compact binaries, which mainly depend on the compactness threshold parameter, and (2) the location of the upper edge of the mass gap between the lightest black holes and the heaviest neutron stars, which mainly depends on the fallback fraction.


Sign in / Sign up

Export Citation Format

Share Document