scholarly journals MODELING THE INITIATION OF THE 2006 DECEMBER 13 CORONAL MASS EJECTION IN AR 10930: THE STRUCTURE AND DYNAMICS OF THE ERUPTING FLUX ROPE

2016 ◽  
Vol 824 (2) ◽  
pp. 93 ◽  
Author(s):  
Yuhong Fan
2006 ◽  
Vol 642 (1) ◽  
pp. 541-553 ◽  
Author(s):  
J. Krall ◽  
V. B. Yurchyshyn ◽  
S. Slinker ◽  
R. M. Skoug ◽  
J. Chen

2016 ◽  
Vol 12 (S327) ◽  
pp. 67-70
Author(s):  
J. Palacios ◽  
C. Cid ◽  
E. Saiz ◽  
A. Guerrero

AbstractWe have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.


2010 ◽  
Vol 725 (1) ◽  
pp. L84-L90 ◽  
Author(s):  
Rui Liu ◽  
Chang Liu ◽  
Shuo Wang ◽  
Na Deng ◽  
Haimin Wang

Author(s):  
N. U. Crooker ◽  
J. T. Gosling ◽  
E. J. Smith ◽  
C. T. Russell

1997 ◽  
Vol 490 (2) ◽  
pp. L191-L194 ◽  
Author(s):  
J. Chen ◽  
R. A. Howard ◽  
G. E. Brueckner ◽  
R. Santoro ◽  
J. Krall ◽  
...  

2009 ◽  
Vol 5 (S264) ◽  
pp. 326-335 ◽  
Author(s):  
Nat Gopalswamy

AbstractThe coronal mass ejection (CME) link to geomagnetic storms stems from the southward component of the interplanetary magnetic field contained in the CME flux ropes and in the sheath between the flux rope and the CME-driven shock. A typical storm-causing CME is characterized by (i) high speed, (ii) large angular width (mostly halos and partial halos), and (iii) solar source location close to the central meridian. For CMEs originating at larger central meridian distances, the storms are mainly caused by the sheath field. Both the magnetic and energy contents of the storm-producing CMEs can be traced to the magnetic structure of active regions and the free energy stored in them.


2010 ◽  
Vol 725 (1) ◽  
pp. L84-L90
Author(s):  
Rui Liu ◽  
Chang Liu ◽  
Shuo Wang ◽  
Na Deng ◽  
Haimin Wang

2021 ◽  
Vol 922 (2) ◽  
pp. 108
Author(s):  
Ju Jing ◽  
Satoshi Inoue ◽  
Jeongwoo Lee ◽  
Qin Li ◽  
Gelu M. Nita ◽  
...  

Abstract We present both the observation and the magnetohydrodynamics (MHD) simulation of the M2.4 flare (SOL2017-07-14T02:09) of NOAA active region (AR) 12665 with a goal to identify its initiation mechanism. The observation by the Atmospheric Image Assembly (AIA) on board the Solar Dynamics Observatory (SDO) shows that the major topology of the AR is a sigmoidal configuration associated with a filament/flux rope. A persistent emerging magnetic flux and the rotation of the sunspot in the core region were observed with Magnetic Imager (HMI) on board the SDO on the timescale of hours before and during the flare, which may provide free magnetic energy needed for the flare/coronal mass ejection (CME). A high-lying coronal loop is seen moving outward in AIA EUV passbands, which is immediately followed by the impulsive phase of the flare. We perform an MHD simulation using the potential magnetic field extrapolated from the measured pre-flare photospheric magnetic field as initial conditions and adopting the observed sunspot rotation and flux emergence as the driving boundary conditions. In our simulation, a sigmoidal magnetic structure and an overlying magnetic flux rope (MFR) form as a response to the imposed sunspot rotation, and the MFR rises to erupt like a CME. These simulation results in good agreement with the observation suggest that the formation of the MFR due to the sunspot rotation and the resulting torus and kink instabilities were essential to the initiation of this flare and the associated coronal mass ejection.


Sign in / Sign up

Export Citation Format

Share Document