mhd simulation
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 58)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Vol 922 (2) ◽  
pp. 108
Author(s):  
Ju Jing ◽  
Satoshi Inoue ◽  
Jeongwoo Lee ◽  
Qin Li ◽  
Gelu M. Nita ◽  
...  

Abstract We present both the observation and the magnetohydrodynamics (MHD) simulation of the M2.4 flare (SOL2017-07-14T02:09) of NOAA active region (AR) 12665 with a goal to identify its initiation mechanism. The observation by the Atmospheric Image Assembly (AIA) on board the Solar Dynamics Observatory (SDO) shows that the major topology of the AR is a sigmoidal configuration associated with a filament/flux rope. A persistent emerging magnetic flux and the rotation of the sunspot in the core region were observed with Magnetic Imager (HMI) on board the SDO on the timescale of hours before and during the flare, which may provide free magnetic energy needed for the flare/coronal mass ejection (CME). A high-lying coronal loop is seen moving outward in AIA EUV passbands, which is immediately followed by the impulsive phase of the flare. We perform an MHD simulation using the potential magnetic field extrapolated from the measured pre-flare photospheric magnetic field as initial conditions and adopting the observed sunspot rotation and flux emergence as the driving boundary conditions. In our simulation, a sigmoidal magnetic structure and an overlying magnetic flux rope (MFR) form as a response to the imposed sunspot rotation, and the MFR rises to erupt like a CME. These simulation results in good agreement with the observation suggest that the formation of the MFR due to the sunspot rotation and the resulting torus and kink instabilities were essential to the initiation of this flare and the associated coronal mass ejection.


Author(s):  
S M Ressler

Abstract We explore the pulsationally driven orbital mass ejection mechanism for Be star disc formation using isothermal, 3D magnetohydrodynamic (MHD) and hydrodynamic simulations. Non-radial pulsations are added to a star rotating at 95 per cent of critical as an inner boundary condition that feeds gas into the domain. In MHD, the initial magnetic field within the star is weak. The hydrodynamics simulation has limited angular momentum transport, resulting in repeating cycles of mass accumulation into a rotationally-supported disc at small radii followed by fall-back on to the star. The MHD simulation, conversely, has efficient (Maxwell αM ∼ 0.04) angular momentum transport provided by both of turbulent and coherent magnetic fields; a slowly decreting midplane driven by the magnetorotational instability and a supersonic wind on the surface of the disc driven by global magnetic torques. The angle and time-averaged properties near the midplane agree reasonably well with a 1D viscous decretion disc model with a modified $\tilde{\alpha }=0.5$, in which the gas transitions from a subsonic thin disc to a supersonic spherical wind at the critical point. 1D models, however, cannot capture the multi-phase decretion/angular structure seen in our simulations. Our results demonstrate that, at least under certain conditions, non-radial pulsations on the surface of a rapidly rotating, weakly magnetized star can drive a Keplerian disc with the basic properties of the viscous decretion disc paradigm, albeit coupled to a laminar wind away from the midplane. Future modeling of Be star discs should consider the possible existence of such a surface wind.


2021 ◽  
Author(s):  
Ward Manchester ◽  
Tong Shi ◽  
Ward Manchester ◽  
Enrico Landi ◽  
Bart Van Der Holst ◽  
...  

Author(s):  
R. Biondo ◽  
P. Pagano ◽  
F. Reale ◽  
A. Bemporad
Keyword(s):  

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1162
Author(s):  
Victor Montagud-Camps ◽  
František Němec ◽  
Jana Šafránková ◽  
Zdeněk Němeček ◽  
Andrea Verdini ◽  
...  

Observations of proton density fluctuations of the solar wind at 1 au have shown the presence of a decade-long transition region of the density spectrum above sub-ion scales, characterized by a flattening of the spectral slope. We use the proton density fluctuations data collected by the BMSW instrument on-board the Spektr-R satellite in order to delimit the plasma parameters under which the transition region can be observed. Under similar plasma conditions to those in observations, we carry out 3D compressible magnetohydrodynamics (MHD) and Hall-MHD numerical simulations and find that Hall physics is necessary to generate the transition region. The analysis of the kω power spectrum in the Hall-MHD simulation indicates that the flattening of the density spectrum is associated with fluctuations having frequencies smaller than the ion cyclotron frequency.


2021 ◽  
Vol 28 (9) ◽  
pp. 092704
Author(s):  
K. Jach ◽  
T. Pisarczyk ◽  
W. Stępniewski ◽  
R. Świerczyński ◽  
J. Krasa ◽  
...  

2021 ◽  
Vol 28 (9) ◽  
pp. 092113
Author(s):  
Xiaozhou Zhao ◽  
Fabio Bacchini ◽  
Rony Keppens

Sign in / Sign up

Export Citation Format

Share Document