scholarly journals THE CONNECTION BETWEEN THE HOST HALO AND THE SATELLITE GALAXIES OF THE MILKY WAY

2016 ◽  
Vol 830 (2) ◽  
pp. 59 ◽  
Author(s):  
Yu Lu ◽  
Andrew Benson ◽  
Yao-Yuan Mao ◽  
Stephanie Tonnesen ◽  
Annika H. G. Peter ◽  
...  
Keyword(s):  
2020 ◽  
Vol 500 (3) ◽  
pp. 3776-3801
Author(s):  
Wenting Wang ◽  
Masahiro Takada ◽  
Xiangchong Li ◽  
Scott G Carlsten ◽  
Ting-Wen Lan ◽  
...  

ABSTRACT We conduct a comprehensive and statistical study of the luminosity functions (LFs) for satellite galaxies, by counting photometric galaxies from HSC, DECaLS, and SDSS around isolated central galaxies (ICGs) and paired galaxies from the SDSS/DR7 spectroscopic sample. Results of different surveys show very good agreement. The satellite LFs can be measured down to MV ∼ −10, and for central primary galaxies as small as 8.5 < log10M*/M⊙ < 9.2 and 9.2 < log10M*/M⊙ < 9.9, which implies there are on average 3–8 satellites with MV < −10 around LMC-mass ICGs. The bright end cutoff of satellite LFs and the satellite abundance are both sensitive to the magnitude gap between the primary and its companions, indicating galaxy systems with larger magnitude gaps are on average hosted by less massive dark matter haloes. By selecting primaries with stellar mass similar to our Milky Way (MW), we discovered that (i) the averaged satellite LFs of ICGs with different magnitude gaps to their companions and of galaxy pairs with different colour or colour combinations all show steeper slopes than the MW satellite LF; (ii) there are on average more satellites with −15 < MV < −10 than those in our MW; (iii) there are on average 1.5 to 2.5 satellites with MV < −16 around ICGs, consistent with our MW; (iv) even after accounting for the large scatter predicted by numerical simulations, the MW satellite LF is uncommon at MV > −12. Hence, the MW and its satellite system are statistically atypical of our sample of MW-mass systems. In consequence, our MW is not a good representative of other MW-mass galaxies. Strong cosmological implications based on only MW satellites await additional discoveries of fainter satellites in extra-galactic systems. Interestingly, the MW satellite LF is typical among other MW-mass systems within 40 Mpc in the local Universe, perhaps implying the Local Volume is an underdense region.


2016 ◽  
Vol 461 (3) ◽  
pp. 2282-2287 ◽  
Author(s):  
J. A. Schewtschenko ◽  
C. M. Baugh ◽  
R. J. Wilkinson ◽  
C. Bœhm ◽  
S. Pascoli ◽  
...  

2009 ◽  
Vol 696 (2) ◽  
pp. 2179-2194 ◽  
Author(s):  
Sergey E. Koposov ◽  
Jaiyul Yoo ◽  
Hans-Walter Rix ◽  
David H. Weinberg ◽  
Andrea V. Macciò ◽  
...  

2021 ◽  
Vol 917 (1) ◽  
pp. 7
Author(s):  
Ethan O. Nadler ◽  
Simon Birrer ◽  
Daniel Gilman ◽  
Risa H. Wechsler ◽  
Xiaolong Du ◽  
...  

2002 ◽  
Vol 123 (2) ◽  
pp. 848-854 ◽  
Author(s):  
Beth Willman ◽  
Julianne Dalcanton ◽  
Željko Ivezić ◽  
Tom Jackson ◽  
Robert Lupton ◽  
...  

2021 ◽  
Vol 923 (1) ◽  
pp. 42
Author(s):  
Marcel S. Pawlowski ◽  
Sangmo Tony Sohn

Abstract Half of the satellite galaxies of Andromeda form a narrow plane termed the Great Plane of Andromeda (GPoA), and their line-of-sight velocities display a correlation reminiscent of a rotating structure. Recently reported first proper-motion measurements for the on-plane satellites NGC 147 and NGC 185 indicate that they indeed co-orbit along the GPoA. This provides a novel opportunity to compare the M31 satellite system to ΛCDM expectations. We perform the first detailed comparison of the orbital alignment of two satellite galaxies beyond the Milky Way with several hydrodynamical and dark-matter-only cosmological simulations (Illustris TNG50, TNG100, ELVIS, and PhatELVIS) in the context of the Planes of Satellite Galaxies Problem. In line with previous works, we find that the spatial flattening and line-of-sight velocity correlation are already in substantial tension with ΛCDM, with none of the simulated analogs simultaneously reproducing both parameters. Almost none (3%–4%) of the simulated systems contain two satellites with orbital poles as well aligned with their satellite plane as indicated by the most likely proper motions of NGC 147 and NGC 185. However, within current measurement uncertainties, it is common (≈70%) that the two best-aligned satellites of simulated systems are consistent with the orbital alignment. Yet, the chance that any two simulated on-plane satellites have as well-aligned orbital poles as observed is low (≈4%). We conclude that confirmation of the tight orbital alignment for these two objects via improved measurements, or the discovery of similar alignments for additional GPoA members, holds the potential to further raise the tension with ΛCDM expectations.


1997 ◽  
Vol 285 (1) ◽  
pp. 111-124 ◽  
Author(s):  
C. G. Tinney ◽  
G. S. Da Costa ◽  
H. Zinnecker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document