rotating structure
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 923 (1) ◽  
pp. 42
Author(s):  
Marcel S. Pawlowski ◽  
Sangmo Tony Sohn

Abstract Half of the satellite galaxies of Andromeda form a narrow plane termed the Great Plane of Andromeda (GPoA), and their line-of-sight velocities display a correlation reminiscent of a rotating structure. Recently reported first proper-motion measurements for the on-plane satellites NGC 147 and NGC 185 indicate that they indeed co-orbit along the GPoA. This provides a novel opportunity to compare the M31 satellite system to ΛCDM expectations. We perform the first detailed comparison of the orbital alignment of two satellite galaxies beyond the Milky Way with several hydrodynamical and dark-matter-only cosmological simulations (Illustris TNG50, TNG100, ELVIS, and PhatELVIS) in the context of the Planes of Satellite Galaxies Problem. In line with previous works, we find that the spatial flattening and line-of-sight velocity correlation are already in substantial tension with ΛCDM, with none of the simulated analogs simultaneously reproducing both parameters. Almost none (3%–4%) of the simulated systems contain two satellites with orbital poles as well aligned with their satellite plane as indicated by the most likely proper motions of NGC 147 and NGC 185. However, within current measurement uncertainties, it is common (≈70%) that the two best-aligned satellites of simulated systems are consistent with the orbital alignment. Yet, the chance that any two simulated on-plane satellites have as well-aligned orbital poles as observed is low (≈4%). We conclude that confirmation of the tight orbital alignment for these two objects via improved measurements, or the discovery of similar alignments for additional GPoA members, holds the potential to further raise the tension with ΛCDM expectations.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 34
Author(s):  
Diego Perini ◽  
Luca Dassa ◽  
Luca Piacentini ◽  
Stefano Uberti

The development of new bent superconducting magnets together with the optimization of the support structure open the way to a considerable reduction in the weight and complexity of rotating gantries for medical applications. The magnets, which define the transfer line to deliver carbon ions to the patients from different angles, are supported by a rotating structure that should be as rigid and as lightweight as possible. Relative displacements of the magnets due to deformations cause incorrect beam position and consequent errors in hitting the target tissues. This paper describes a possible rotating structure which is considerably lighter than the previous designs. A method to compensate part of the deformation by complementary rotations of the driving motor is proposed. The influence of the construction tolerances and deformations of the supports is also analyzed and alignment and adjustment possibilities are discussed.


2021 ◽  
Author(s):  
Linfeng Lyu ◽  
Weidong Zhu

Abstract A new operational modal analysis (OMA) method is developed for estimation of modal parameters (MPs) of a rotating structure (RS) subject to random excitation using a nonuniform rotating beam model, an image processing method, and an improved demodulation method. The solution to the governing equation of a nonuniform rotating beam is derived, which can be considered as the response of the beam measured by a continuously scanning laser Doppler vibrometer (CSLDV) system. A recently developed tracking CSLDV system can track and scan the RS. The image processing method determines the angular position of the RS so that the tracking CSLDV system can sweep its laser spot along a time-varying path on it. The improved demodulation method obtains undamped mode shapes (UMSs) of the RS by multiplying its measured response by sinusoids whose frequencies are its damped natural frequencies (DNFs) that are obtained from the fast Fourier transform of the measured response. Experimental investigation of the OMA method using the tracking CSLDV system is conducted, and MPs of a rotating fan blade (RFB), including DNFs and UMSs, with different constant speeds and its instantaneous MPs with a non-constant speed are estimated. Estimated first DNFs and UMSs of the stationary fan blade and RFB are compared with those from the lifting method that was previously developed by the authors.


Author(s):  
Z. Szmit

AbstractNumerical and experimental methods in free and forced vibrations of the rotating structure consisting of the rigid hub and three flexible beams are considered. Firstly, the system of four mutually coupled dimensionless differential governing equations is presented and then forced response of the system as well as synchronization phenomenon are investigated. Next, the finite elements method is used to design the rotating structure and analyse complex dynamic response. During the numerical calculations symmetric, as well as de-tuned rotor are analyzed. Finally, results obtained from ordinary differential equations and numerical simulations are compared with experimental tests.


2021 ◽  
pp. 1-30
Author(s):  
Linfeng Lyu ◽  
Weidong Zhu

Abstract A new operational modal analysis (OMA) method that is based on a rigorous nonuniform rotating beam vibration theory and an image processing method is developed to estimate modal parameters (MPs) of a rotating structure (RS) under random excitation using an improved demodulation method. The solution to the governing equation of a nonuniform rotating beam is derived, which can be considered as the response of the beam measured by a continuously scanning laser Doppler vibrometer (CSLDV) system. A recently developed tracking CSLDV system can track and scan the RS. The image processing method determines the angular position of the RS so that the tracking CSLDV system can sweep its laser spot along a time-varying scan path on it. The improved demodulation method obtains undamped mode shapes (UMSs) of the RS by multiplying its measured response by sinusoidal signals with its damped natural frequencies (DNFs) obtained from the fast Fourier transform of the measured response. Experimental investigation of the OMA method using the tracking CSLDV system is conducted, and MPs of a rotating fan blade (RFB), including DNFs and UMSs, with different constant speeds and its instantaneous MPs with a non-constant speed are estimated. Estimated first DNFs and UMSs of the stationary fan blade and RFB are compared with those from the lifting method that was previously developed by the authors.


2020 ◽  
Author(s):  
Roberto Capata

Abstract This work aims to analyze the various types of peristaltic pumps by studying, in particular, the use of the peristaltic roller pump to highlight its critical issues and propose new effective and innovative solutions. One possible application of this device is in hemodialysis, which is a physical therapy substitution of kidney function that allows, in almost all cases, recovery and maintenance of the main biological functions while remaining the uremic condition. As for the extracorporeal one, the equipment used to purify the blood from toxic substances that are no longer normally eliminated by kidney filtration is divided mainly into two types: rotary peristaltic pump and a linear peristaltic pump. Having to work with a very particular fluid such as blood and in direct contact with the patient, they need to be extremely accurate and must ensure a constant and continuous functioning. The rotary peristaltic pump is the most widely used for hemodialysis and having been extensively studied in literature it has since found extensive solutions in the application field. As is well known, peristaltic pump refers to a device that exploits the principle of peristalsis to function, i.e. the transit of a bottleneck on a tube, in this case, the catheter, to push the fluid contained outwards. In particular, a roundabout peristaltic pump consists of a rotating structure consisting of two or more rollers that in turn revolve around their axis. With their displacement, the rollers clog adjacent catheter sections at a time so that after the first roller has passed the tube returns to its initial size creating the vacuum and then sucking the fluid. In this way, the liquid is pushed from the tube towards the patient. The motion of all these components is powered by an electric motor connected directly to the main rotating structure. The pumping of fluids through hoses using the propagation of a peristaltic wave has been the subject of design and scientific studies for more than 4 decades. This is easily justifiable since the phenomenon of peristalsis is known to be an important responsible mechanism of fluid transport in many biological organs. The goal is (starting on studies on the blood, a variable density fluid) to analyze in detail the peristaltic roller pump and propose its parametric optimization, aimed at determining the critical speed, beyond which the machine damages any kind of fluid that needs special treatment (blood, food, special gel, medical ointments and so on).


Sign in / Sign up

Export Citation Format

Share Document