satellite galaxies
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 73)

H-INDEX

55
(FIVE YEARS 9)

2022 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Bhavya Pardasani ◽  
Andrew Wetzel ◽  
Jenna Samuel

Abstract In order to investigate the role of the host halo in quenching satellite galaxies, we have characterized a single Milky Way-like host galaxy from the FIRE simulations from z = 0–1.76 by quantifying the gas density of the host halo environment with respect to distance from the host and galactocentric latitude. The gas density decreases with increasing distance from the host according to a broken power law. At earlier times (2–10 Gyr ago), the density in the inner regions of the host halo was enhanced relative to z = 0. Thus, earlier infalling satellites experienced more ram-pressure and were more efficiently quenched compared to later infalling satellites. We also find that in the inner halo (<150 kpc) the density is 2–3 times larger close to the plane of the host galaxy disk versus above or below the disk, so satellites that orbit at low galactocentric latitudes may be more efficiently quenched.


2021 ◽  
Vol 923 (1) ◽  
pp. 42
Author(s):  
Marcel S. Pawlowski ◽  
Sangmo Tony Sohn

Abstract Half of the satellite galaxies of Andromeda form a narrow plane termed the Great Plane of Andromeda (GPoA), and their line-of-sight velocities display a correlation reminiscent of a rotating structure. Recently reported first proper-motion measurements for the on-plane satellites NGC 147 and NGC 185 indicate that they indeed co-orbit along the GPoA. This provides a novel opportunity to compare the M31 satellite system to ΛCDM expectations. We perform the first detailed comparison of the orbital alignment of two satellite galaxies beyond the Milky Way with several hydrodynamical and dark-matter-only cosmological simulations (Illustris TNG50, TNG100, ELVIS, and PhatELVIS) in the context of the Planes of Satellite Galaxies Problem. In line with previous works, we find that the spatial flattening and line-of-sight velocity correlation are already in substantial tension with ΛCDM, with none of the simulated analogs simultaneously reproducing both parameters. Almost none (3%–4%) of the simulated systems contain two satellites with orbital poles as well aligned with their satellite plane as indicated by the most likely proper motions of NGC 147 and NGC 185. However, within current measurement uncertainties, it is common (≈70%) that the two best-aligned satellites of simulated systems are consistent with the orbital alignment. Yet, the chance that any two simulated on-plane satellites have as well-aligned orbital poles as observed is low (≈4%). We conclude that confirmation of the tight orbital alignment for these two objects via improved measurements, or the discovery of similar alignments for additional GPoA members, holds the potential to further raise the tension with ΛCDM expectations.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 66
Author(s):  
Marcel S. Pawlowski

Driven by the increasingly complete observational knowledge of systems of satellite galaxies, mutual spatial alignments and relations in velocities among satellites belonging to a common host have become a productive field of research. Numerous studies have investigated different types of such phase-space correlations and were met with varying degrees of attention by the community. The Planes of Satellite Galaxies issue is maybe the best-known example, with a rich field of research literature and an ongoing, controversial debate on how much of a challenge it poses to the ΛCDM model of cosmology. Another type of correlation, the apparent excess of close pairs of dwarf galaxies, has received considerably less attention despite its reported tension with ΛCDM expectations. With the fast expansion of proper motion measurements in recent years, largely driven by the Gaia mission, other peculiar phase-space correlations have been uncovered among the satellites of the Milky Way. Examples are the apparent tangential velocity excess of satellites compared to cosmological expectations, and the unexpected preference of satellites to be close to their pericenters. At the same time, other kinds of correlations have been found to be more in line with cosmological expectations—specifically, lopsided satellite galaxy systems and the accretion of groups of satellite galaxies. The latter has mostly been studied in cosmological simulations thus far, but it offers the potential to address some of the other issues by providing a way to produce correlations among the orbits of a group’s satellite galaxy members. This review is the first to provide an introduction to the highly active field of phase-space correlations among satellite galaxy systems. The emphasis is on summarizing existing, recent research and highlighting interdependencies between the different, currently almost exclusively individually considered types of correlations. Future prospects in light of upcoming observational facilities and our ever-expanding knowledge of satellite galaxy systems beyond the Local Group are also briefly discussed.


2021 ◽  
Vol 507 (4) ◽  
pp. 4764-4778 ◽  
Author(s):  
Christopher T Garling ◽  
Annika H G Peter ◽  
Christopher S Kochanek ◽  
David J Sand ◽  
Denija Crnojević

ABSTRACT We present results from a resolved stellar population search for dwarf satellite galaxies of six nearby (D &lt; 5 Mpc), sub-Milky Way mass hosts using deep (m ∼ 27 mag) optical imaging from the Large Binocular Telescope. We perform image simulations to quantify our detection efficiency for dwarfs over a large range in luminosity and size, and develop a fast catalogue-based emulator that includes a treatment of unresolved photometric blending. We discover no new dwarf satellites, but we recover two previously known dwarfs (DDO 113 and LV J1228+4358) with MV &lt; −12 that lie in our survey volume. We preview a new theoretical framework to predict satellite luminosity functions using analytical probability distribution functions and apply it to our sample, finding that we predict one fewer classical dwarf and one more faint dwarf (MV ∼ −7.5) than we find in our observational sample (i.e. the observational sample is slightly top-heavy). However, the overall number of dwarfs in the observational sample (2) is in good agreement with the theoretical expectations. Interestingly, DDO 113 shows signs of environmental quenching and LV J1228+4358 is tidally disrupting, suggesting that low-mass hosts may affect their satellites more severely than previously believed.


2021 ◽  
Vol 917 (1) ◽  
pp. 7
Author(s):  
Ethan O. Nadler ◽  
Simon Birrer ◽  
Daniel Gilman ◽  
Risa H. Wechsler ◽  
Xiaolong Du ◽  
...  

2021 ◽  
Vol 2021 (08) ◽  
pp. 062 ◽  
Author(s):  
Oliver Newton ◽  
Matteo Leo ◽  
Marius Cautun ◽  
Adrian Jenkins ◽  
Carlos S. Frenk ◽  
...  

Author(s):  
Stephanie O’Neil ◽  
David J Barnes ◽  
Mark Vogelsberger ◽  
Benedikt Diemer

Abstract The splashback radius, Rsp, is a physically motivated halo boundary that separates infalling and collapsed matter of haloes. We study Rsp in the hydrodynamic and dark matter only IllustrisTNG simulations. The most commonly adopted signature of Rsp is the radius at which the radial density profiles are steepest. Therefore, we explicitly optimise our density profile fit to the profile slope and find that this leads to a $\sim 5\%$ larger radius compared to other optimisations. We calculate Rsp for haloes with masses between 1013 − 15M⊙ as a function of halo mass, accretion rate and redshift. Rsp decreases with mass and with redshift for haloes of similar M200m in agreement with previous work. We also find that Rsp/R200m decreases with halo accretion rate. We apply our analysis to dark matter, gas and satellite galaxies associated with haloes to investigate the observational potential of Rsp. The radius of steepest slope in gas profiles is consistently smaller than the value calculated from dark matter profiles. The steepest slope in galaxy profiles, which are often used in observations, tends to agree with dark matter profiles but is lower for less massive haloes. We compare Rsp in hydrodynamic and N-body dark matter only simulations and do not find a significant difference caused by the addition of baryonic physics. Thus, results from dark matter only simulations should be applicable to realistic haloes.


2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Jordi Solís-López ◽  
Francisco S. Guzmán ◽  
Tonatiuh Matos ◽  
Victor H. Robles ◽  
L. Arturo Ureña-López

Sign in / Sign up

Export Citation Format

Share Document