scholarly journals Weak-lensing Power Spectrum Reconstruction by Counting Galaxies. I. The ABS Method

2017 ◽  
Vol 845 (2) ◽  
pp. 174 ◽  
Author(s):  
Xinjuan Yang ◽  
Jun Zhang ◽  
Yu Yu ◽  
Pengjie Zhang
Author(s):  
Robin E Upham ◽  
Michael L Brown ◽  
Lee Whittaker

Abstract We investigate whether a Gaussian likelihood is sufficient to obtain accurate parameter constraints from a Euclid-like combined tomographic power spectrum analysis of weak lensing, galaxy clustering and their cross-correlation. Testing its performance on the full sky against the Wishart distribution, which is the exact likelihood under the assumption of Gaussian fields, we find that the Gaussian likelihood returns accurate parameter constraints. This accuracy is robust to the choices made in the likelihood analysis, including the choice of fiducial cosmology, the range of scales included, and the random noise level. We extend our results to the cut sky by evaluating the additional non-Gaussianity of the joint cut-sky likelihood in both its marginal distributions and dependence structure. We find that the cut-sky likelihood is more non-Gaussian than the full-sky likelihood, but at a level insufficient to introduce significant inaccuracy into parameter constraints obtained using the Gaussian likelihood. Our results should not be affected by the assumption of Gaussian fields, as this approximation only becomes inaccurate on small scales, which in turn corresponds to the limit in which any non-Gaussianity of the likelihood becomes negligible. We nevertheless compare against N-body weak lensing simulations and find no evidence of significant additional non-Gaussianity in the likelihood. Our results indicate that a Gaussian likelihood will be sufficient for robust parameter constraints with power spectra from Stage IV weak lensing surveys.


2021 ◽  
Vol 2021 (08) ◽  
pp. 001
Author(s):  
Lucia F. de la Bella ◽  
Nicolas Tessore ◽  
Sarah Bridle

2020 ◽  
Vol 492 (4) ◽  
pp. 5023-5029 ◽  
Author(s):  
Niall Jeffrey ◽  
François Lanusse ◽  
Ofer Lahav ◽  
Jean-Luc Starck

ABSTRACT We present the first reconstruction of dark matter maps from weak lensing observational data using deep learning. We train a convolution neural network with a U-Net-based architecture on over 3.6 × 105 simulated data realizations with non-Gaussian shape noise and with cosmological parameters varying over a broad prior distribution. We interpret our newly created dark energy survey science verification (DES SV) map as an approximation of the posterior mean P(κ|γ) of the convergence given observed shear. Our DeepMass1 method is substantially more accurate than existing mass-mapping methods. With a validation set of 8000 simulated DES SV data realizations, compared to Wiener filtering with a fixed power spectrum, the DeepMass method improved the mean square error (MSE) by 11 per cent. With N-body simulated MICE mock data, we show that Wiener filtering, with the optimal known power spectrum, still gives a worse MSE than our generalized method with no input cosmological parameters; we show that the improvement is driven by the non-linear structures in the convergence. With higher galaxy density in future weak lensing data unveiling more non-linear scales, it is likely that deep learning will be a leading approach for mass mapping with Euclid and LSST.


2010 ◽  
Vol 712 (2) ◽  
pp. 992-1002 ◽  
Author(s):  
Joel Bergé ◽  
Adam Amara ◽  
Alexandre Réfrégier
Keyword(s):  

2013 ◽  
Vol 87 (2) ◽  
Author(s):  
Xiuyuan Yang ◽  
Jan M. Kratochvil ◽  
Kevin Huffenberger ◽  
Zoltán Haiman ◽  
Morgan May

Sign in / Sign up

Export Citation Format

Share Document