scholarly journals Deep learning dark matter map reconstructions from DES SV weak lensing data

2020 ◽  
Vol 492 (4) ◽  
pp. 5023-5029 ◽  
Author(s):  
Niall Jeffrey ◽  
François Lanusse ◽  
Ofer Lahav ◽  
Jean-Luc Starck

ABSTRACT We present the first reconstruction of dark matter maps from weak lensing observational data using deep learning. We train a convolution neural network with a U-Net-based architecture on over 3.6 × 105 simulated data realizations with non-Gaussian shape noise and with cosmological parameters varying over a broad prior distribution. We interpret our newly created dark energy survey science verification (DES SV) map as an approximation of the posterior mean P(κ|γ) of the convergence given observed shear. Our DeepMass1 method is substantially more accurate than existing mass-mapping methods. With a validation set of 8000 simulated DES SV data realizations, compared to Wiener filtering with a fixed power spectrum, the DeepMass method improved the mean square error (MSE) by 11 per cent. With N-body simulated MICE mock data, we show that Wiener filtering, with the optimal known power spectrum, still gives a worse MSE than our generalized method with no input cosmological parameters; we show that the improvement is driven by the non-linear structures in the convergence. With higher galaxy density in future weak lensing data unveiling more non-linear scales, it is likely that deep learning will be a leading approach for mass mapping with Euclid and LSST.

1987 ◽  
Vol 117 ◽  
pp. 367-367
Author(s):  
Rosemary F. G. Wyse ◽  
Bernard J. T. Jones

We present a simple model for the formation of elliptical galaxies, based on a binary clustering hierarchy of dark matter, the chemical enrichment of the gas at each level being controlled by supernovae. The initial conditions for the non-linear phases of galaxy formation are set by the post-recombination power spectrum of density fluctuations. We investigate two models for this power spectrum - the first is a straightforward power law, |δk|2 ∝ kn, and the second is Peeble's analytic approximation to the emergent spectrum in a universe dominated by cold dark matter. The normalisation is chosen such that on some scale, say M ∼ 1012M⊙, the objects that condense out have properties - radius and velocity dispersion - resembling ‘typical’ galaxies. There is some ambiguity in this due to the poorly determined mass-to-light ratio of a typical elliptical galaxy — we look at two normalisations, σ1D ∼ 350kms−1 and σ1D ∼ 140kms−1. The choice determines which of Compton cooling or hydrogen cooling is more important during the galaxy formation period. The non-linear behaviour of the perturbations is treated by the homogeneous sphere approximation.


2020 ◽  
Vol 500 (3) ◽  
pp. 3162-3177
Author(s):  
Jurek B Bauer ◽  
David J E Marsh ◽  
Renée Hložek ◽  
Hamsa Padmanabhan ◽  
Alex Laguë

ABSTRACT We consider intensity mapping (IM) of neutral hydrogen (H i) in the redshift range 0 ≲ z ≲ 3 employing a halo model approach where H i is assumed to follow the distribution of dark matter (DM) haloes. If a portion of the DM is composed of ultralight axions, then the abundance of haloes is changed compared to cold DM below the axion Jeans mass. With fixed total H i density, $\Omega _{\rm H\, \rm {\small I}}$, assumed to reside entirely in haloes, this effect introduces a scale-independent increase in the H i power spectrum on scales above the axion Jeans scale, which our model predicts consistent with N-body simulations. Lighter axions introduce a scale-dependent feature even on linear scales due to its suppression of the matter power spectrum near the Jeans scale. We use the Fisher matrix formalism to forecast the ability of future H i surveys to constrain the axion fraction of DM and marginalize over astrophysical and model uncertainties. We find that a HIRAX-like survey is a very reliable IM survey configuration, being affected minimally by uncertainties due to non-linear scales, while the SKA1MID configuration is the most constraining as it is sensitive to non-linear scales. Including non-linear scales and combining a SKA1MID-like IM survey with the Simons Observatory CMB, the benchmark ‘fuzzy DM’ model with ma = 10−22 eV can be constrained at few per cent. This is almost an order of magnitude improvement over current limits from the Ly α forest. For lighter ULAs, this limit improves below 1 per cent, and allows the possibility to test the connection between axion models and the grand unification scale across a wide range of masses.


2020 ◽  
Vol 496 (3) ◽  
pp. 3862-3869 ◽  
Author(s):  
Anatoly Klypin ◽  
Francisco Prada ◽  
Joyce Byun

ABSTRACT Making cosmological inferences from the observed galaxy clustering requires accurate predictions for the mean clustering statistics and their covariances. Those are affected by cosmic variance – the statistical noise due to the finite number of harmonics. The cosmic variance can be suppressed by fixing the amplitudes of the harmonics instead of drawing them from a Gaussian distribution predicted by the inflation models. Initial realizations also can be generated in pairs with 180○ flipped phases to further reduce the variance. Here, we compare the consequences of using paired-and-fixed versus Gaussian initial conditions on the average dark matter clustering and covariance matrices predicted from N-body simulations. As in previous studies, we find no measurable differences between paired-and-fixed and Gaussian simulations for the average density distribution function, power spectrum, and bispectrum. Yet, the covariances from paired-and-fixed simulations are suppressed in a complicated scale- and redshift-dependent way. The situation is particularly problematic on the scales of Baryon acoustic oscillations where the covariance matrix of the power spectrum is lower by only $\sim 20{{\ \rm per\ cent}}$ compared to the Gaussian realizations, implying that there is not much of a reduction of the cosmic variance. The non-trivial suppression, combined with the fact that paired-and-fixed covariances are noisier than from Gaussian simulations, suggests that there is no path towards obtaining accurate covariance matrices from paired-and-fixed simulations – result, that is theoretically expected and accepted in the field. Because the covariances are crucial for the observational estimates of galaxy clustering statistics and cosmological parameters, paired-and-fixed simulations, though useful for some applications, cannot be used for the production of mock galaxy catalogues.


2021 ◽  
Vol 2021 (12) ◽  
pp. 044
Author(s):  
G. Parimbelli ◽  
G. Scelfo ◽  
S.K. Giri ◽  
A. Schneider ◽  
M. Archidiacono ◽  
...  

Abstract We investigate and quantify the impact of mixed (cold and warm) dark matter models on large-scale structure observables. In this scenario, dark matter comes in two phases, a cold one (CDM) and a warm one (WDM): the presence of the latter causes a suppression in the matter power spectrum which is allowed by current constraints and may be detected in present-day and upcoming surveys. We run a large set of N-body simulations in order to build an efficient and accurate emulator to predict the aforementioned suppression with percent precision over a wide range of values for the WDM mass, Mwdm, and its fraction with respect to the totality of dark matter, fwdm. The suppression in the matter power spectrum is found to be independent of changes in the cosmological parameters at the 2% level for k≲ 10 h/Mpc and z≤ 3.5. In the same ranges, by applying a baryonification procedure on both ΛCDM and CWDM simulations to account for the effect of feedback, we find a similar level of agreement between the two scenarios. We examine the impact that such suppression has on weak lensing and angular galaxy clustering power spectra. Finally, we discuss the impact of mixed dark matter on the shape of the halo mass function and which analytical prescription yields the best agreement with simulations. We provide the reader with an application to galaxy cluster number counts.


2017 ◽  
Vol 471 (4) ◽  
pp. 4412-4435 ◽  
Author(s):  
F. Köhlinger ◽  
M. Viola ◽  
B. Joachimi ◽  
H. Hoekstra ◽  
E. van Uitert ◽  
...  

2020 ◽  
Vol 501 (1) ◽  
pp. 833-852
Author(s):  
Toshiki Kurita ◽  
Masahiro Takada ◽  
Takahiro Nishimichi ◽  
Ryuichi Takahashi ◽  
Ken Osato ◽  
...  

ABSTRACT We use a suite of N-body simulations to study intrinsic alignments (IA) of halo shapes with the surrounding large-scale structure in the ΛCDM model. For this purpose, we develop a novel method to measure multipole moments of the three-dimensional power spectrum of the E-mode field of halo shapes with the matter/halo distribution, $P_{\delta E}^{(\ell)}(k)$ (or $P^{(\ell)}_{{\rm h}E}$), and those of the auto-power spectrum of the E-mode, $P^{(\ell)}_{EE}(k)$, based on the E/B-mode decomposition. The IA power spectra have non-vanishing amplitudes over the linear to non-linear scales, and the large-scale amplitudes at k ≲ 0.1 h−1 Mpc are related to the matter power spectrum via a constant coefficient (AIA), similar to the linear bias parameter of galaxy or halo density field. We find that the cross- and auto-power spectra PδE and PEE at non-linear scales, k ≳ 0.1 h−1 Mpc, show different k-dependences relative to the matter power spectrum, suggesting a violation of the non-linear alignment model commonly used to model contaminations of cosmic shear signals. The IA power spectra exhibit baryon acoustic oscillations, and vary with halo samples of different masses, redshifts, and cosmological parameters (Ωm, S8). The cumulative signal-to-noise ratio for the IA power spectra is about 60 per cent of that for the halo density power spectrum, where the super-sample covariance is found to give a significant contribution to the total covariance. Thus our results demonstrate that the IA power spectra of galaxy shapes, measured from imaging and spectroscopic surveys for an overlapping area of the sky, can be used to probe the underlying matter power spectrum, the primordial curvature perturbations, and cosmological parameters, in addition to the standard galaxy density power spectrum.


Author(s):  
Susan Pyne ◽  
Benjamin Joachimi

Abstract We investigate the prospects for using the weak lensing bispectrum alongside the power spectrum to control systematic uncertainties in a Euclid-like survey. Three systematic effects are considered: the intrinsic alignment of galaxies, uncertainties in the means of tomographic redshift distributions, and multiplicative bias in the measurement of the shear signal. We find that the bispectrum is very effective in mitigating these systematic errors. Varying all three systematics simultaneously, a joint power spectrum and bispectrum analysis reduces the area of credible regions for the cosmological parameters Ωm and σ8 by a factor of 90 and for the two parameters of a time-varying dark energy equation of state by a factor of almost 20, compared with the baseline approach of using the power spectrum alone and of imposing priors consistent with the accuracy requirements specified for Euclid. We also demonstrate that including the bispectrum self-calibrates all three systematic effects to the stringent levels required by the forthcoming generation of weak lensing surveys, thereby reducing the need for external calibration data.


Sign in / Sign up

Export Citation Format

Share Document