mass mapping
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 9)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 26 (08) ◽  
Author(s):  
Nischita Kaza ◽  
Ashkan Ojaghi ◽  
Francisco E. Robles

2020 ◽  
Vol 500 (4) ◽  
pp. 5436-5452
Author(s):  
M A Price ◽  
J D McEwen ◽  
L Pratley ◽  
T D Kitching

ABSTRACT To date weak gravitational lensing surveys have typically been restricted to small fields of view, such that the flat-sky approximation has been sufficiently satisfied. However, with Stage IV surveys (e.g. LSST and Euclid) imminent, extending mass-mapping techniques to the sphere is a fundamental necessity. As such, we extend the sparse hierarchical Bayesian mass-mapping formalism presented in previous work to the spherical sky. For the first time, this allows us to construct maximum a posteriori spherical weak lensing dark-matter mass-maps, with principled Bayesian uncertainties, without imposing or assuming Gaussianty. We solve the spherical mass-mapping inverse problem in the analysis setting adopting a sparsity promoting Laplace-type wavelet prior, though this theoretical framework supports all log-concave posteriors. Our spherical mass-mapping formalism facilitates principled statistical interpretation of reconstructions. We apply our framework to convergence reconstruction on high resolution N-body simulations with pseudo-Euclid masking, polluted with a variety of realistic noise levels, and show a significant increase in reconstruction fidelity compared to standard approaches. Furthermore, we perform the largest joint reconstruction to date of the majority of publicly available shear observational data sets (combining DESY1, KiDS450, and CFHTLens) and find that our formalism recovers a convergence map with significantly enhanced small-scale detail. Within our Bayesian framework we validate, in a statistically rigorous manner, the community’s intuition regarding the need to smooth spherical Kaiser-Squires estimates to provide physically meaningful convergence maps. Such approaches cannot reveal the small-scale physical structures that we recover within our framework.


2020 ◽  
Vol 496 (3) ◽  
pp. 3973-3990
Author(s):  
Sut-Ieng Tam ◽  
Richard Massey ◽  
Mathilde Jauzac ◽  
Andrew Robertson

ABSTRACT We quantify the performance of mass mapping techniques on mock imaging and gravitational lensing data of galaxy clusters. The optimum method depends upon the scientific goal. We assess measurements of clusters’ radial density profiles, departures from sphericity, and their filamentary attachment to the cosmic web. We find that mass maps produced by direct (KS93) inversion of shear measurements are unbiased, and that their noise can be suppressed via filtering with mrlens. Forward-fitting techniques, such as lenstool, suppress noise further, but at a cost of biased ellipticity in the cluster core and overestimation of mass at large radii. Interestingly, current searches for filaments are noise-limited by the intrinsic shapes of weakly lensed galaxies, rather than by the projection of line-of-sight structures. Therefore, space-based or balloon-based imaging surveys that resolve a high density of lensed galaxies could soon detect one or two filaments around most clusters.


Author(s):  
Tereza Smrhova ◽  
Petra Junkova ◽  
Stepanka Kuckova ◽  
Tomas Suchy ◽  
Monika Supova

2020 ◽  
Vol 492 (4) ◽  
pp. 5023-5029 ◽  
Author(s):  
Niall Jeffrey ◽  
François Lanusse ◽  
Ofer Lahav ◽  
Jean-Luc Starck

ABSTRACT We present the first reconstruction of dark matter maps from weak lensing observational data using deep learning. We train a convolution neural network with a U-Net-based architecture on over 3.6 × 105 simulated data realizations with non-Gaussian shape noise and with cosmological parameters varying over a broad prior distribution. We interpret our newly created dark energy survey science verification (DES SV) map as an approximation of the posterior mean P(κ|γ) of the convergence given observed shear. Our DeepMass1 method is substantially more accurate than existing mass-mapping methods. With a validation set of 8000 simulated DES SV data realizations, compared to Wiener filtering with a fixed power spectrum, the DeepMass method improved the mean square error (MSE) by 11 per cent. With N-body simulated MICE mock data, we show that Wiener filtering, with the optimal known power spectrum, still gives a worse MSE than our generalized method with no input cosmological parameters; we show that the improvement is driven by the non-linear structures in the convergence. With higher galaxy density in future weak lensing data unveiling more non-linear scales, it is likely that deep learning will be a leading approach for mass mapping with Euclid and LSST.


2020 ◽  
Author(s):  
Emre Onsel ◽  
Douglas Stead ◽  
Wayne Barnett ◽  
Luca Zorzi ◽  
A Shaban

2019 ◽  
Vol 492 (1) ◽  
pp. 394-404 ◽  
Author(s):  
M A Price ◽  
X Cai ◽  
J D McEwen ◽  
M Pereyra ◽  
T D Kitching ◽  
...  

ABSTRACT Until recently, mass-mapping techniques for weak gravitational lensing convergence reconstruction have lacked a principled statistical framework upon which to quantify reconstruction uncertainties, without making strong assumptions of Gaussianity. In previous work, we presented a sparse hierarchical Bayesian formalism for convergence reconstruction that addresses this shortcoming. Here, we draw on the concept of local credible intervals (cf. Bayesian error bars) as an extension of the uncertainty quantification techniques previously detailed. These uncertainty quantification techniques are benchmarked against those recovered via Px-MALA – a state-of-the-art proximal Markov chain Monte Carlo (MCMC) algorithm. We find that, typically, our recovered uncertainties are everywhere conservative (never underestimate the uncertainty, yet the approximation error is bounded above), of similar magnitude and highly correlated with those recovered via Px-MALA. Moreover, we demonstrate an increase in computational efficiency of $\mathcal {O}(10^6)$ when using our sparse Bayesian approach over MCMC techniques. This computational saving is critical for the application of Bayesian uncertainty quantification to large-scale stage IV surveys such as LSST and Euclid.


2019 ◽  
Vol 489 (3) ◽  
pp. 3236-3250 ◽  
Author(s):  
M A Price ◽  
J D McEwen ◽  
X Cai ◽  
T D Kitching (for the LSST Dark Energy Science Collaboration)

ABSTRACT Weak lensing convergence maps – upon which higher order statistics can be calculated – can be recovered from observations of the shear field by solving the lensing inverse problem. For typical surveys this inverse problem is ill-posed (often seriously) leading to substantial uncertainty on the recovered convergence maps. In this paper we propose novel methods for quantifying the Bayesian uncertainty in the location of recovered features and the uncertainty in the cumulative peak statistic – the peak count as a function of signal-to-noise ratio (SNR). We adopt the sparse hierarchical Bayesian mass-mapping framework developed in previous work, which provides robust reconstructions and principled statistical interpretation of reconstructed convergence maps without the need to assume or impose Gaussianity. We demonstrate our uncertainty quantification techniques on both Bolshoi N-body (cluster scale) and Buzzard V-1.6 (large-scale structure) N-body simulations. For the first time, this methodology allows one to recover approximate Bayesian upper and lower limits on the cumulative peak statistic at well-defined confidence levels.


ACS Nano ◽  
2018 ◽  
Vol 12 (11) ◽  
pp. 11139-11151 ◽  
Author(s):  
Xiangchun Zhang ◽  
Ru Liu ◽  
Qing Yuan ◽  
Fuping Gao ◽  
Jiaojiao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document