scholarly journals Sufficiency of a Gaussian power spectrum likelihood for accurate cosmology from upcoming weak lensing surveys

Author(s):  
Robin E Upham ◽  
Michael L Brown ◽  
Lee Whittaker

Abstract We investigate whether a Gaussian likelihood is sufficient to obtain accurate parameter constraints from a Euclid-like combined tomographic power spectrum analysis of weak lensing, galaxy clustering and their cross-correlation. Testing its performance on the full sky against the Wishart distribution, which is the exact likelihood under the assumption of Gaussian fields, we find that the Gaussian likelihood returns accurate parameter constraints. This accuracy is robust to the choices made in the likelihood analysis, including the choice of fiducial cosmology, the range of scales included, and the random noise level. We extend our results to the cut sky by evaluating the additional non-Gaussianity of the joint cut-sky likelihood in both its marginal distributions and dependence structure. We find that the cut-sky likelihood is more non-Gaussian than the full-sky likelihood, but at a level insufficient to introduce significant inaccuracy into parameter constraints obtained using the Gaussian likelihood. Our results should not be affected by the assumption of Gaussian fields, as this approximation only becomes inaccurate on small scales, which in turn corresponds to the limit in which any non-Gaussianity of the likelihood becomes negligible. We nevertheless compare against N-body weak lensing simulations and find no evidence of significant additional non-Gaussianity in the likelihood. Our results indicate that a Gaussian likelihood will be sufficient for robust parameter constraints with power spectra from Stage IV weak lensing surveys.

2019 ◽  
Vol 488 (2) ◽  
pp. 1652-1678 ◽  
Author(s):  
Hung-Jin Huang ◽  
Tim Eifler ◽  
Rachel Mandelbaum ◽  
Scott Dodelson

Abstract Modifications of the matter power spectrum due to baryonic physics are one of the major theoretical uncertainties in cosmological weak lensing measurements. Developing robust mitigation schemes for this source of systematic uncertainty increases the robustness of cosmological constraints, and may increase their precision if they enable the use of information from smaller scales. Here we explore the performance of two mitigation schemes for baryonic effects in weak lensing cosmic shear: the principal component analysis (PCA) method and the halo-model approach in hmcode. We construct mock tomographic shear power spectra from four hydrodynamical simulations, and run simulated likelihood analyses with cosmolike assuming LSST-like survey statistics. With an angular scale cut of ℓmax < 2000, both methods successfully remove the biases in cosmological parameters due to the various baryonic physics scenarios, with the PCA method causing less degradation in the parameter constraints than hmcode. For a more aggressive ℓmax = 5000, the PCA method performs well for all but one baryonic physics scenario, requiring additional training simulations to account for the extreme baryonic physics scenario of Illustris; hmcode exhibits tensions in the 2D posterior distributions of cosmological parameters due to lack of freedom in describing the power spectrum for $k \gt 10\ h^{-1}\, \mathrm{Mpc}$. We investigate variants of the PCA method and improve the bias mitigation through PCA by accounting for the noise properties in the data via Cholesky decomposition of the covariance matrix. Our improved PCA method allows us to retain more statistical constraining power while effectively mitigating baryonic uncertainties even for a broad range of baryonic physics scenarios.


2021 ◽  
Vol 502 (2) ◽  
pp. 3035-3044
Author(s):  
Natalia Porqueres ◽  
Alan Heavens ◽  
Daniel Mortlock ◽  
Guilhem Lavaux

ABSTRACT We present a Bayesian hierarchical modelling approach to infer the cosmic matter density field, and the lensing and the matter power spectra, from cosmic shear data. This method uses a physical model of cosmic structure formation to infer physically plausible cosmic structures, which accounts for the non-Gaussian features of the gravitationally evolved matter distribution and light-cone effects. We test and validate our framework with realistic simulated shear data, demonstrating that the method recovers the unbiased matter distribution and the correct lensing and matter power spectrum. While the cosmology is fixed in this test, and the method employs a prior power spectrum, we demonstrate that the lensing results are sensitive to the true power spectrum when this differs from the prior. In this case, the density field samples are generated with a power spectrum that deviates from the prior, and the method recovers the true lensing power spectrum. The method also recovers the matter power spectrum across the sky, but as currently implemented, it cannot determine the radial power since isotropy is not imposed. In summary, our method provides physically plausible inference of the dark matter distribution from cosmic shear data, allowing us to extract information beyond the two-point statistics and exploiting the full information content of the cosmological fields.


2019 ◽  
Vol 490 (2) ◽  
pp. 1843-1860 ◽  
Author(s):  
Dezső Ribli ◽  
Bálint Ármin Pataki ◽  
José Manuel Zorrilla Matilla ◽  
Daniel Hsu ◽  
Zoltán Haiman ◽  
...  

ABSTRACT Weak gravitational lensing is one of the most promising cosmological probes of the late universe. Several large ongoing (DES, KiDS, HSC) and planned (LSST, Euclid, WFIRST) astronomical surveys attempt to collect even deeper and larger scale data on weak lensing. Due to gravitational collapse, the distribution of dark matter is non-Gaussian on small scales. However, observations are typically evaluated through the two-point correlation function of galaxy shear, which does not capture non-Gaussian features of the lensing maps. Previous studies attempted to extract non-Gaussian information from weak lensing observations through several higher order statistics such as the three-point correlation function, peak counts, or Minkowski functionals. Deep convolutional neural networks (CNN) emerged in the field of computer vision with tremendous success, and they offer a new and very promising framework to extract information from 2D or 3D astronomical data sets, confirmed by recent studies on weak lensing. We show that a CNN is able to yield significantly stricter constraints of (σ8, Ωm) cosmological parameters than the power spectrum using convergence maps generated by full N-body simulations and ray-tracing, at angular scales and shape noise levels relevant for future observations. In a scenario mimicking LSST or Euclid, the CNN yields 2.4–2.8 times smaller credible contours than the power spectrum, and 3.5–4.2 times smaller at noise levels corresponding to a deep space survey such as WFIRST. We also show that at shape noise levels achievable in future space surveys the CNN yields 1.4–2.1 times smaller contours than peak counts, a higher order statistic capable of extracting non-Gaussian information from weak lensing maps.


2020 ◽  
Vol 641 ◽  
pp. A8 ◽  
Author(s):  
◽  
N. Aghanim ◽  
Y. Akrami ◽  
M. Ashdown ◽  
J. Aumont ◽  
...  

We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5σ to 9σ. Combined with temperature, lensing is detected at 40σ. We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 ≤ L ≤ 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the ΛCDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains σ8Ωm0.25 = 0.589 ± 0.020 (1σ errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, σ8 = 0.811 ± 0.019, H0 = 67.9−1.3+1.2 km s−1 Mpc−1, and Ωm = 0.303−0.018+0.016. Combining with Planck CMB power spectrum data, we measure σ8 to better than 1% precision, finding σ8 = 0.811 ± 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in σ8 − Ωm space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combined Planck-only estimate of the lensing potential over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.


2020 ◽  
Vol 495 (3) ◽  
pp. 2531-2542 ◽  
Author(s):  
William R Coulton ◽  
Jia Liu ◽  
Ian G McCarthy ◽  
Ken Osato

ABSTRACT We present a novel statistic to extract cosmological information in weak lensing data: the lensing minima. We also investigate the effect of baryons on cosmological constraints from peak and minimum counts. Using the MassiveNuS simulations, we find that lensing minima are sensitive to non-Gaussian cosmological information and are complementary to the lensing power spectrum and peak counts. For an LSST-like survey, we obtain $95{{\ \rm per\ cent}}$ credible intervals from a combination of lensing minima and peaks that are significantly stronger than from the power spectrum alone, by $44{{\ \rm per\ cent}}$, $11{{\ \rm per\ cent}}$, and $63{{\ \rm per\ cent}}$ for the neutrino mass sum ∑mν, matter density Ωm, and amplitude of fluctuation As, respectively. We explore the effect of baryonic processes on lensing minima and peaks using the hydrodynamical simulations BAHAMAS and Osato15. We find that ignoring baryonic effects would lead to strong (≈4σ) biases in inferences from peak counts, but negligible (≈0.5σ) for minimum counts, suggesting lensing minima are a potentially more robust tool against baryonic effects. Finally, we demonstrate that the biases can in principle be mitigated without significantly degrading cosmological constraints when we model and marginalize the baryonic effects.


2019 ◽  
Vol 490 (4) ◽  
pp. 4688-4714 ◽  
Author(s):  
Matteo Rizzato ◽  
Karim Benabed ◽  
Francis Bernardeau ◽  
Fabien Lacasa

ABSTRACT We address key points for an efficient implementation of likelihood codes for modern weak lensing large-scale structure surveys. Specifically, we focus on the joint weak lensing convergence power spectrum–bispectrum probe and we tackle the numerical challenges required by a realistic analysis. Under the assumption of (multivariate) Gaussian likelihoods, we have developed a high performance code that allows highly parallelized prediction of the binned tomographic observables and of their joint non-Gaussian covariance matrix accounting for terms up to the six-point correlation function and supersample effects. This performance allows us to qualitatively address several interesting scientific questions. We find that the bispectrum provides an improvement in terms of signal-to-noise ratio (S/N) of about 10 per cent on top of the power spectrum, making it a non-negligible source of information for future surveys. Furthermore, we are capable to test the impact of theoretical uncertainties in the halo model used to build our observables; with presently allowed variations we conclude that the impact is negligible on the S/N. Finally, we consider data compression possibilities to optimize future analyses of the weak lensing bispectrum. We find that, ignoring systematics, five equipopulated redshift bins are enough to recover the information content of a Euclid-like survey, with negligible improvement when increasing to 10 bins. We also explore principal component analysis and dependence on the triangle shapes as ways to reduce the numerical complexity of the problem.


2020 ◽  
Vol 499 (2) ◽  
pp. 2977-2993
Author(s):  
Chien-Hao Lin ◽  
Joachim Harnois-Déraps ◽  
Tim Eifler ◽  
Taylor Pospisil ◽  
Rachel Mandelbaum ◽  
...  

ABSTRACT We study the significance of non-Gaussianity in the likelihood of weak lensing shear two-point correlation functions, detecting significantly non-zero skewness and kurtosis in 1D marginal distributions of shear two-point correlation functions in simulated weak lensing data. We examine the implications in the context of future surveys, in particular LSST, with derivations of how the non-Gaussianity scales with survey area. We show that there is no significant bias in 1D posteriors of Ωm and σ8 due to the non-Gaussian likelihood distributions of shear correlations functions using the mock data (100 deg2). We also present a systematic approach to constructing approximate multivariate likelihoods with 1D parametric functions by assuming independence or more flexible non-parametric multivariate methods after decorrelating the data points using principal component analysis (PCA). While the use of PCA does not modify the non-Gaussianity of the multivariate likelihood, we find empirically that the 1D marginal sampling distributions of the PCA components exhibit less skewness and kurtosis than the original shear correlation functions. Modelling the likelihood with marginal parametric functions based on the assumption of independence between PCA components thus gives a lower limit for the biases. We further demonstrate that the difference in cosmological parameter constraints between the multivariate Gaussian likelihood model and more complex non-Gaussian likelihood models would be even smaller for an LSST-like survey. In addition, the PCA approach automatically serves as a data compression method, enabling the retention of the majority of the cosmological information while reducing the dimensionality of the data vector by a factor of ∼5.


Author(s):  
Alex Gough ◽  
Cora Uhlemann

The late universe contains a wealth of information about fundamental physics and gravity, wrapped up in non-Gaussian fields. To make use of as much information as possible it is necessary to go beyond two-point statistics. Rather than going to higher order N-point correlation functions, we demonstrate that the probability distribution function (PDF) of spheres in the matter field (a one-point function) already contains a significant amount of this non-Gaussian information. The matter PDF dissects different density environments which are lumped together in two-point statistics, making it particularly useful for probing modifications of gravity or expansion history. Our approach in Cataneo et. al. 2021 extends the success of Large Deviation Theory for predicting the matter PDF in ΛCDM in these “extended” cosmologies. A Fisher forecast demonstrates the information content in the matter PDF via constraints for a Euclid-like survey volume combining the 3D matter PDF with the 3D matter power spectrum. Adding the matter PDF halves the uncertainties on parameters in an evolving dark energy model, relative to the power spectrum alone. Additionally, the matter PDF contains enough non-linear information to substantially increase the detection significance of departures from General Relativity, with improvements up to six times the power spectrum alone. This analysis demonstrates that the matter PDF is a promising non-Gaussian statistic for extracting cosmological information, particularly for beyond ΛCDM models.


Sign in / Sign up

Export Citation Format

Share Document