scholarly journals Barred Galaxies in the IllustrisTNG Simulation

2020 ◽  
Vol 904 (2) ◽  
pp. 170
Author(s):  
Dongyao Zhao ◽  
Min Du ◽  
Luis C. Ho ◽  
Victor P. Debattista ◽  
Jingjing Shi
Keyword(s):  
2021 ◽  
Vol 502 (2) ◽  
pp. 2446-2473
Author(s):  
Peter Erwin ◽  
Anil Seth ◽  
Victor P Debattista ◽  
Marja Seidel ◽  
Kianusch Mehrgan ◽  
...  

ABSTRACT We present detailed morphological, photometric, and stellar-kinematic analyses of the central regions of two massive, early-type barred galaxies with nearly identical large-scale morphologies. Both have large, strong bars with prominent inner photometric excesses that we associate with boxy/peanut-shaped (B/P) bulges; the latter constitute ∼30 per cent of the galaxy light. Inside its B/P bulge, NGC 4608 has a compact, almost circular structure (half-light radius Re ≈ 310 pc, Sérsic n = 2.2) we identify as a classical bulge, amounting to 12.1 per cent of the total light, along with a nuclear star cluster (Re ∼ 4 pc). NGC 4643, in contrast, has a nuclear disc with an unusual broken-exponential surface-brightness profile (13.2 per cent of the light), and a very small spheroidal component (Re ≈ 35 pc, n = 1.6; 0.5 per cent of the light). IFU stellar kinematics support this picture, with NGC 4608’s classical bulge slowly rotating and dominated by high velocity dispersion, while NGC 4643’s nuclear disc shows a drop to lower dispersion, rapid rotation, V–h3 anticorrelation, and elevated h4. Both galaxies show at least some evidence for V–h3correlation in the bar (outside the respective classical bulge and nuclear disc), in agreement with model predictions. Standard two-component (bulge/disc) decompositions yield B/T ∼ 0.5–0.7 (and bulge n > 2) for both galaxies. This overestimates the true ‘spheroid’ components by factors of 4 (NGC 4608) and over 100 (NGC 4643), illustrating the perils of naive bulge-disc decompositions applied to massive barred galaxies.


New Astronomy ◽  
2018 ◽  
Vol 60 ◽  
pp. 48-60 ◽  
Author(s):  
Lucas Antonio Caritá ◽  
Irapuan Rodrigues ◽  
Ivânio Puerari ◽  
Luiz Eduardo Camargo Aranha Schiavo

2006 ◽  
Vol 370 (1) ◽  
pp. 477-487 ◽  
Author(s):  
T. Lisker ◽  
V. P. Debattista ◽  
I. Ferreras ◽  
P. Erwin

2013 ◽  
Vol 553 ◽  
pp. A102 ◽  
Author(s):  
P. Di Matteo ◽  
M. Haywood ◽  
F. Combes ◽  
B. Semelin ◽  
O. N. Snaith

Author(s):  
Bogdan C Ciambur ◽  
Francesca Fragkoudi ◽  
Sergey Khoperskov ◽  
Paola Di Matteo ◽  
Françoise Combes

Abstract Boxy, peanut– or X–shaped “bulges” are observed in a large fraction of barred galaxies viewed in, or close to, edge-on projection, as well as in the Milky Way. They are the product of dynamical instabilities occurring in stellar bars, which cause the latter to buckle and thicken vertically. Recent studies have found nearby galaxies that harbour two such features arising at different radial scales, in a nested configuration. In this paper we explore the formation of such double peanuts, using a collisionless N–body simulation of a pure disc evolving in isolation within a live dark matter halo, which we analyse in a completely analogous way to observations of real galaxies. In the simulation we find a stable double configuration consisting of two X/peanut structures associated to the same galactic bar – rotating with the same pattern speed – but with different morphology, formation time, and evolution. The inner, conventional peanut-shaped structure forms early via the buckling of the bar, and experiences little evolution once it stabilises. This feature is consistent in terms of size, strength and morphology, with peanut structures observed in nearby galaxies. The outer structure, however, displays a strong X, or “bow-tie”, morphology. It forms just after the inner peanut, and gradually extends in time (within 1 to 1.5 Gyr) to almost the end of the bar, a radial scale where ansae occur. We conclude that, although both structures form, and are dynamically coupled to, the same bar, they are supported by inherently different mechanisms.


2020 ◽  
Vol 15 (S359) ◽  
pp. 446-447
Author(s):  
Daniel A. Marostica ◽  
Rubens E. G. Machado

AbstractDark matter bars are structures that may form inside dark matter haloes of barred galaxies. Haloes can depart from sphericity and also be subject to some spin. The latter is known to have profound impacts on the evolution of both stellar and DM bars, such as stronger dynamical instabilities, more violent vertical bucklings and dissolution or impairment of stellar bar growth. On the other hand, dark matter bars of spherical haloes become initially stronger in the presence of spin. In this study, we add spin to triaxial halos in order to quantify and compare the strength of their bars. Using N-body simulations, we find that spin accelerates main instabilities and strengthens the halo bars, although their final strength depends only on triaxiality. The most triaxial halo barely forms a halo bar, showing that flattening opposes to DM bar strengthening and indicating that there is a limit on how flattened the parent structure can be.


2012 ◽  
Vol 10 (H16) ◽  
pp. 355-355
Author(s):  
P. Di Matteo ◽  
M. Haywood ◽  
F. Combes ◽  
B. Semelin ◽  
C. Babusiaux ◽  
...  

AbstractIn this talk, I will present the result of high resolution numerical simulations of disk galaxies with various bulge/disk ratios evolving isolated, showing that: •Most of migration takes place when the bar strength is high and decreases in the phases of low activity (in agreement with the results by Brunetti et el. 2011, Minchev et al. 2011).•Most of the stars inside the corotation radius (CR) do not migrate in the outer regions, but stay confined in the inner disk, while stars outside CR can migrate either inwards or outwards, diffusing over the whole disk.•Migration is accompanied by significative azimuthal variations in the metallicity distribution, of the order of 0.1 dex for an initial gradient of ~-0.07 dex/kpc.•Boxy bulges are an example of stellar structures whose properties (stellar content, vertical metallicity, [α/Fe] and age gradients, ..) are affected by radial migration (see also Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document