scholarly journals Comparison between 2D and 3D codes in dynamical simulations of gas flow in barred galaxies

2007 ◽  
Vol 478 (3) ◽  
pp. 717-721 ◽  
Author(s):  
I. Pérez
2005 ◽  
Vol 107 ◽  
pp. 119-124 ◽  
Author(s):  
Jacek Kędzierski ◽  
Jürgen Engemann ◽  
Markus Teschke ◽  
Dariusz Korzec

A novel atmospheric pressure plasma jet with a cylindrical symmetry i.e. a tubular dielectric barrier and two tubular electrodes was developed at Microstructure Research Center – fmt, Wuppertal, Germany. The jet was investigated by means of ultra fast (down to tens of nanoseconds exposition time) ICCD photography and regular CCD photography. Some spectacular results were achieved and their partial explanation was presented. The jet acts as a “plasma gun” throwing small “plasma bullets” out of its orifice. The most important findings are: (i) the bullet velocity is approximately 3 orders of magnitude larger than the gas flow velocity, and (ii) the jet dynamics is mainly electrical field controlled. A simple model - formation of a jet in air - based on a Helium metastables core can explain qualitatively reasonably well most of our experimental observations. Some variations of the original cylindrical jet geometry were presented and discussed: microjet and fmt Plasma-Pen, single tube multijet, tube-in-tube single and multijet systems (so-called “Wuppertal-Approach”).


1985 ◽  
Vol 6 (2) ◽  
pp. 202-205 ◽  
Author(s):  
M. P. Schwarz

AbstractIn simulations of gas flow in the gravitational field of model barred galaxies which we have described elsewhere, structures resembling inner rings have formed. The model rings encircle the bar as observed in real galaxies, but are more elongated than the average inner ring. In this paper we show that the addition of a lens-like component to the background field results in much rounder rings. Indeed the shape and position of the model rings are very sensitive to any steep gradients in the azimuthally averaged surface density near the ends of the bar.


2020 ◽  
Vol 494 (2) ◽  
pp. 1826-1837 ◽  
Author(s):  
A de Lorenzo-Cáceres ◽  
J Méndez-Abreu ◽  
B Thorne ◽  
L Costantin

ABSTRACT The intrinsic photometric properties of inner and outer stellar bars within 17 double-barred galaxies are thoroughly studied through a photometric analysis consisting of (i) two-dimensional (2D) multicomponent photometric decompositions, and (ii) three-dimensional (3D) statistical deprojections for measuring the thickening of bars, thus retrieving their 3D shape. The results are compared with previous measurements obtained with the widely used analysis of integrated light. Large-scale bars in single- and double-barred systems show similar sizes, and inner bars may be longer than outer bars in different galaxies. We find two distinct groups of inner bars attending to their in-plane length and ellipticity, resulting in a bimodal behaviour for the inner/outer bar length ratio. Such bimodality is related neither to the properties of the host galaxy nor the dominant bulge, and it does not show a counterpart in the dimension off the disc plane. The group of long inner bars lays at the lower end of the outer bar length versus ellipticity correlation, whereas the short inner bars are out of that relation. We suggest that this behaviour could be due to either a different nature of the inner discs from which the inner bars are dynamically formed or a different assembly stage for the inner bars. This last possibility would imply that the dynamical assembly of inner bars is a slow process taking several Gyr to happen. We have also explored whether all large-scale bars are prone to develop an inner bar at some stage of their lives, possibility we cannot fully confirm or discard.


2004 ◽  
Vol 220 ◽  
pp. 273-274
Author(s):  
Panos A. Patsis ◽  
Charalampos Skokos ◽  
E. Athanassoula

We study the conditions that favour boxiness of isodensities in the face-on views of orbital 3D models for barred galaxies. in particular, we consider several cases with different mass values for the bar, disk and bulge components of the potential, as well as different values of the bar pattern speed. Using orbital weighted profiles of the basic stable periodic orbits of the x1 tree for every model, we show that boxiness is in general a composite effect due to the presence of stable orbits belonging to several 2D and 3D families.


2018 ◽  
Vol 484 (1) ◽  
pp. 665-686 ◽  
Author(s):  
A de Lorenzo-Cáceres ◽  
J Méndez-Abreu ◽  
B Thorne ◽  
L Costantin
Keyword(s):  

2014 ◽  
Vol 26 (4) ◽  
pp. 223-230 ◽  
Author(s):  
Balázs Illés

Purpose – This paper aims to compare and study two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics simulation results of gas flow velocity in a convection reflow oven and show the differences of the different modeling aspects. With the spread of finer surface-mounted devices, it is important to understand convection reflow soldering technology more deeply. Design/methodology/approach – Convection reflow ovens are divided into zones. Every zone contains an upper and a lower nozzle-matrix. The gas flow velocity field is one of the most important parameters of the local heat transfer in the oven. It is not possible to examine the gas flow field with classical experimental methods due to the extreme circumstances in the reflow oven. Therefore, numerical simulations are necessary. Findings – The heat transfer changes highly along the moving direction of the assembly, and it is nearly homogeneous along the traverse direction of the zones. The gas flow velocity values of the 2D model are too high due to the geometrical distortions of the 2D model. On the other hand, the calculated flow field of the 2D model is more accurate than in the 3D model due to the finer mesh. Research limitations/implications – Investigating the effects of tall components on a printed wiring board inside the gas flow field and further analysis of the mesh size effect on the models. Practical implications – The presented results can be useful during the design of a simulation study in a reflow oven (or in similar processes). Originality/value – The presented results provide a completely novel approach from the aspect of 2D and 3D simulations of a convection reflow oven. The results also reveal the heat transfer differences.


Nature ◽  
10.1038/16861 ◽  
1999 ◽  
Vol 397 (6717) ◽  
pp. 324-327 ◽  
Author(s):  
R. Beck ◽  
M. Ehle ◽  
V. Shoutenkov ◽  
A. Shukurov ◽  
D. Sokoloff

2020 ◽  
Vol 644 ◽  
pp. A38
Author(s):  
S. Díaz-García ◽  
F. D. Moyano ◽  
S. Comerón ◽  
J. H. Knapen ◽  
H. Salo ◽  
...  

Context. Stellar bars are known to gradually funnel gas to the central parts of disk galaxies. It remains a matter of debate why the distribution of ionized gas along bars and in the circumnuclear regions varies among galaxies. Aims. Our goal is to investigate the spatial distribution of star formation (SF) within bars of nearby low-inclination disk galaxies (i <  65°) from the S4G survey. We aim to link the loci of SF to global properties of the hosts (morphological type, stellar mass, gas fraction, and bar-induced gravitational torques), providing constraints for the conditions that regulate SF in bars. Methods. We use archival GALEX far- and near-UV imaging for 772 barred galaxies, and for a control sample of 423 non-barred galaxies. We also assemble a compilation of continuum-subtracted Hα images for 433 barred galaxies, 70 of which we produced from ancillary photometry and MUSE and CALIFA integral field unit data cubes. We employ two complementary approaches: (i) the analysis of bar (2D) and disk (1D) stacks built from co-added UV images (oriented and scaled with respect to the stellar bars and the extent of disks) of hundreds of galaxies that are binned based on their Hubble stage (T) and bar family; and (ii) the visual classification of the morphology of ionized regions (traced from Hα and UV data) in individual galaxies into three main SF classes: (A) only circumnuclear SF; (B) SF at the bar ends, but not along the bar; and (C) SF along the bar. Barred galaxies with active and passive inner rings are likewise classified. Results. Massive, gas-poor, lenticular galaxies typically belong to SF class A; this is probably related to bar-induced quenching of SF in the disk. The distribution of SF class B peaks for early- and intermediate-type spirals; this most likely results from the interplay of gas flow, shocks, and enhanced shear in massive centrally concentrated galaxies with large bar amplitudes (the latter is supported by the lack of a dip in the radial distribution of SF in non-barred galaxies). Late-type gas-rich galaxies with high gravitational torques are mainly assigned to SF class C; we argue that this is a consequence of low shear among the faintest galaxies. In bar stacks of spiral galaxies the UV emission traces the stellar bars and dominates on their leading side, as witnessed in simulations. Among early-type spirals the central UV emission is ∼0.5 mag brighter in strongly barred galaxies, relative to their weakly barred counterparts; this is probably related to the efficiency of strong bars sweeping the disk gas and triggering central starbursts. On the contrary, in later types the UV emission is stronger at all radii in strongly barred galaxies than in weakly barred and non-barred ones. We also show that the distributions of SF in inner-ringed galaxies are broadly the same in barred and non-barred galaxies, including a UV and Hα deficit in the middle part of the bar; this hints at the effect of resonance rings trapping gas that is no longer funneled inwards. Conclusions. Distinct distributions of SF within bars are reported in galaxies of different morphological types. Star-forming bars are most common among late-type gas-rich galaxies. Bars are important agents in the regulation of SF in disks.


2019 ◽  
Vol 29 (3) ◽  
pp. 129
Author(s):  
Forat H. Alsultany ◽  
Rusul A. Ghazia

Here, we report the seed/catalyst-free growth of 2D and 3D ZnO nanostructures on a glass substrate by thermal evaporation of Zn powder in the presence of O2 gas. These nanostructures were grown on (75 ± 5 nm) ZnO seed layers, which were deposited on glass substrates by radio frequency magnetron sputtering. Prior to synthesized ZnO nanostructures, the sputtered ZnO seeds were annealed using the continuous wave CO2 laser at 450 ℃ in air for 15 min.The effects of carrier gas flow rate on the morphological, structural, and optical properties were systematically studied using field emission scanning electron microscopy, X-ray diffraction and UV-Vis spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document