metallicity distribution
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 33)

H-INDEX

41
(FIVE YEARS 7)

Author(s):  
Samyaday Choudhury ◽  
Richard de Grijs ◽  
Kenji Bekki ◽  
Maria-Rosa L Cioni ◽  
Valentin D Ivanov ◽  
...  

Abstract We have derived high-spatial-resolution metallicity maps covering ∼105 deg2 across the Large Magellanic Cloud (LMC) using near-infrared passbands from the VISTA Survey of the Magellanic Clouds. We attempt to understand the metallicity distribution and gradients of the LMC up to a radius of ∼ 6 kpc. We identify red giant branch (RGB) stars in spatially distinct Y, (Y − Ks) colour–magnitude diagrams. In any of our selected subregions, the RGB slope is used as an indicator of the average metallicity, based on calibration to metallicity using spectroscopic data. The mean LMC metallicity is [Fe/H] = −0.42 dex (σ[Fe/H] = 0.04 dex). We find the bar to be mildly metal-rich compared with the outer disc, showing evidence of a shallow gradient in metallicity (−0.008 ± 0.001 dex kpc−1) from the galaxy’s centre to a radius of 6 kpc. Our results suggest that the LMC’s stellar bar is chemically similar to the bars found in large spiral galaxies. The LMC’s radial metallicity gradient is asymmetric. It is metal-poor and flatter towards the southwest, in the direction of the Bridge. This hints at mixing and/or distortion of the spatial metallicity distribution, presumably caused by tidal interactions between the Magellanic Clouds.


2021 ◽  
Vol 911 (2) ◽  
pp. L23
Author(s):  
Anirudh Chiti ◽  
Mohammad K. Mardini ◽  
Anna Frebel ◽  
Tatsuya Daniel

2020 ◽  
Vol 644 ◽  
pp. A8
Author(s):  
S. Cristallo ◽  
A. Nanni ◽  
G. Cescutti ◽  
I. Minchev ◽  
N. Liu ◽  
...  

The vast majority (≳90%) of presolar SiC grains identified in primitive meteorites are relics of ancient asymptotic giant branch (AGB) stars, whose ejecta were incorporated into the Solar System during its formation. Detailed characterization of these ancient stardust grains has revealed valuable information on mixing processes in AGB interiors in great detail. However, the mass and metallicity distribution of their parent stars still remains ambiguous, although such information is crucial to investigating the slow neutron-capture process, whose efficiency depends on mass and metallicity. Using a well-known Milky Way chemo-dynamical model, we followed the evolution of the AGB stars that polluted the Solar System at 4.57 Gyr ago and weighted the stars based on their SiC dust productions. We find that presolar SiC in the Solar System predominantly originated from AGB stars with M ∼ 2 M⊙ and Z ∼ Z⊙. Our finding well explains the grain-size distribution of presolar SiC identified in situ in primitive meteorites. Moreover, it provides complementary results to very recent papers that characterized parent stars of presolar SiC.


2020 ◽  
Vol 499 (4) ◽  
pp. 4838-4853
Author(s):  
A Mejía-Narváez ◽  
S F Sánchez ◽  
E A D Lacerda ◽  
L Carigi ◽  
L Galbany ◽  
...  

ABSTRACT We present a novel method to retrieve the chemical structure of galaxies using integral field spectroscopy data through the stellar Metallicity Distribution Function (MDF). This is the probability distribution of observing stellar populations having a metallicity Z. We apply this method to a set of 550 galaxies from the CALIFA survey. We present the behaviour of the MDF as a function of the morphology, the stellar mass, and the radial distance. We use the stellar metallicity radial profiles retrieved as the first moment of the MDF, as an internal test for our method. The gradients in these radial profiles are consistent with the known trends: they are negative in massive early-type galaxies and tend to positive values in less massive late-type ones. We find that these radial profiles may not convey the complex chemical structure of some galaxy types. Overall, low mass galaxies (log M⋆/M⊙ ≤ 10) have broad MDFs ($\sigma _Z\sim 1.0\,$ dex), with unclear dependence on their morphology. However this result is likely affected by under-represented bins in our sample. On the other hand, massive galaxies (log M⋆/M⊙ ≥ 11) have systematically narrower MDFs ($\sigma _Z\le 0.2\,$ dex). We find a clear trend whereby the MDFs at rk/Re > 1.5 have large variance. This result is consistent with sparse SFHs in medium/low stellar density regions. We further find there are multimodal MDFs in the outskirts ($\sim 18\,$ per cent) and the central regions ($\sim 40\,$ per cent) of galaxies. This behaviour is linked to a fast chemical enrichment during early stages of the SFH, along with the posterior formation of a metal-poor stellar population.


2020 ◽  
Vol 642 ◽  
pp. A81
Author(s):  
M. Schultheis ◽  
A. Rojas-Arriagada ◽  
K. Cunha ◽  
M. Zoccali ◽  
C. Chiappini ◽  
...  

The Galactic center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), allow the measurement of metallicities in the inner region of our Galaxy. Making use of the latest APOGEE data release (DR16), we are able for the first time to study cool Asymptotic Giant branch (AGB) stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the red giant branch. We studied metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ∼ +0.3 dex and a metal-poor peak around {Fe/H] = −0.5 dex, which is 0.2 dex poorer than Baade’s Window. The α-elements Mg, Si, Ca, and O show a similar trend to the Galactic bulge. The metal-poor component is enhanced in the α-elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high-velocity stars with vgal >  300 km s−1; the metal-rich stars show a much higher rotation velocity (∼200 km s−1) with respect to the metal-poor stars (∼140 km s−1). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disk and the nuclear star cluster show distinct chemical signatures and might be formed differently.


2020 ◽  
Vol 499 (1) ◽  
pp. 1037-1057 ◽  
Author(s):  
Alvaro Rojas-Arriagada ◽  
Gail Zasowski ◽  
Mathias Schultheis ◽  
Manuela Zoccali ◽  
Sten Hasselquist ◽  
...  

ABSTRACT We use data of ∼13 000 stars from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment survey to study the shape of the bulge metallicity distribution function (MDF) within the region |ℓ| ≤ 11° and |b| ≤ 13°, and spatially constrained to RGC ≤ 3.5 kpc. We apply Gaussian mixture modelling and non-negative matrix factorization decomposition techniques to identify the optimal number and the properties of MDF components. We find that the shape and spatial variations of the MDF (at [Fe/H] ≥ −1 dex) are well represented as a smoothly varying contribution of three overlapping components located at [Fe/H] = +0.32, −0.17, and −0.66 dex. The bimodal MDF found in previous studies is in agreement with our trimodal assessment once the limitations in sample size and individual measurement errors are taken into account. The shape of the MDF and its correlations with kinematics reveal different spatial distributions and kinematical structure for the three components co-existing in the bulge region. We confirm the consensus physical interpretation of metal-rich stars as associated with the secularly evolved disc into a boxy/peanut X-shape bar. On the other hand, metal-intermediate stars could be the product of in-situ formation at high redshift in a gas-rich environment characterized by violent and fast star formation. This interpretation would help us to link a present-day structure with those observed in formation in the centre of high-redshift galaxies. Finally, metal-poor stars may correspond to the metal-rich tail of the population sampled at lower metallicity from the study of RR Lyrae stars. Conversely, they could be associated with the metal-poor tail of the early thick disc.


2020 ◽  
Vol 498 (3) ◽  
pp. 3334-3350
Author(s):  
Victor P Debattista ◽  
David J Liddicott ◽  
Tigran Khachaturyants ◽  
Leandro Beraldo e Silva

ABSTRACT We introduce the study of box/peanut (B/P) bulges in the action space of the initial axisymmetric system. We explore where populations with different actions end up once a bar forms and a B/P bulge develops. We find that the density bimodality due to the B/P bulge (the X-shape) is better traced by populations with low radial, ${\it J}_{R,0}$, or vertical, ${\it J}_{z,0}$, actions, or high azimuthal action, ${\it J}_{\phi ,0}$. Generally, populations separated by ${\it J}_{R,0}$ have a greater variation in bar strength and vertical heating than those separated by ${\it J}_{z,0}$. While the bar substantially weakens the initial vertical gradient of ${\it J}_{z,0}$, it also drives a strikingly monotonic vertical profile of ${\it J}_{R,0}$. We then use these results to guide us in assigning metallicity to star particles in a pure N-body model. Because stellar metallicity in unbarred galaxies depends on age as well as radial and vertical positions, the initial actions are particularly well suited for assigning metallicities. We argue that assigning metallicities based on single actions, or on positions, results in metallicity distributions inconsistent with those observed in real galaxies. We therefore use all three actions to assign metallicity to an N-body model by comparing with the actions of a star-forming, unbarred simulation. The resulting metallicity distribution is pinched on the vertical axis, has a realistic vertical gradient, and has a stronger X-shape in metal-rich populations, as found in real galaxies.


2020 ◽  
Vol 499 (2) ◽  
pp. 2357-2379
Author(s):  
Christian I Johnson ◽  
Robert Michael Rich ◽  
Michael D Young ◽  
Iulia T Simion ◽  
William I Clarkson ◽  
...  

ABSTRACT The Blanco DECam Bulge Survey (BDBS) imaged more than 200 sq deg of the Southern Galactic bulge using the ugrizY filters of the Dark Energy Camera, and produced point spread function photometry of approximately 250 million unique sources. In this paper, we present details regarding the construction and collation of survey catalogues, and also discuss the adopted calibration and dereddening procedures. Early science results are presented with a particular emphasis on the bulge metallicity distribution function and globular clusters. A key result is the strong correlation (σ ∼ 0.2 dex) between (u − i)o and [Fe/H] for bulge red clump giants. We utilized this relation to find that interior bulge fields may be well described by simple closed box enrichment models, but fields exterior to b ∼ −6° seem to require a secondary metal-poor component. Applying scaled versions of the closed box model to the outer bulge fields is shown to significantly reduce the strengths of any additional metal-poor components when compared to Gaussian mixture models. Additional results include: a confirmation that the u band splits the subgiant branch in M22 as a function of metallicity, the detection of possible extratidal stars along the orbits of M 22 and FSR 1758, and additional evidence that NGC 6569 may have a small but discrete He spread, as evidenced by red clump luminosity variations in the reddest bands. We do not confirm previous claims that FSR 1758 is part of a larger extended structure.


2020 ◽  
Vol 497 (4) ◽  
pp. 4459-4471 ◽  
Author(s):  
Azadeh Fattahi ◽  
Alis J Deason ◽  
Carlos S Frenk ◽  
Christine M Simpson ◽  
Facundo A Gómez ◽  
...  

ABSTRACT We use magnetohydrodynamical simulations of Milky Way-mass haloes from the Auriga project to investigate the properties of surviving and destroyed dwarf galaxies that are accreted by these haloes over cosmic time. We show that the combined luminosity function of surviving and destroyed dwarfs at infall is similar in the various Auriga haloes, and is dominated by the destroyed dwarfs. There is, however, a strong dependence on infall time: destroyed dwarfs typically have early infall times of less than 6 Gyr (since the big bang), whereas the majority of dwarfs accreted after 10 Gyr have survived to the present day. Because of their late infall, the surviving satellites have higher metallicities at infall than their destroyed counterparts of similar mass at infall; the difference is even more pronounced for the present-day metallicities of satellites, many of which continue to form stars after infall, in particular for $M_{\rm star}\gt 10^7 \, {\rm M}_\odot$. In agreement with previous work, we find that a small number of relatively massive destroyed dwarf galaxies dominate the mass of stellar haloes. However, there is a significant radial dependence: while 90 per cent of the mass in the inner regions (${\lt}20\,$ kpc) is contributed, on average, by only three massive progenitors, the outer regions (${\gt}100\,$ kpc) typically have ∼8 main progenitors of relatively lower mass. Finally, we show that a few massive progenitors dominate the metallicity distribution of accreted stars, even at the metal-poor end. Contrary to common assumptions in the literature, stars from dwarf galaxies of mass $M_{\rm star}\lt 10^7 \, {\rm M}_\odot$ make up less than 10 per cent of the accreted, metal poor stars ([Fe/H] ${\lt}-3$) in the inner $50\,$ kpc.


Sign in / Sign up

Export Citation Format

Share Document