scholarly journals On the Correlation between Hot Jupiters and Stellar Clustering: High-eccentricity Migration Induced by Stellar Flybys

2021 ◽  
Vol 913 (2) ◽  
pp. 104
Author(s):  
Laetitia Rodet ◽  
Yubo Su ◽  
Dong Lai
2010 ◽  
Vol 6 (S276) ◽  
pp. 252-257
Author(s):  
Daniel C. Fabrycky

AbstractTransits give us the mass, radius, and orbital properties of the planet, all of which inform dynamical theories. Two properties of the hot Jupiters suggest they had a dramatic origin via tidal damping from high eccentricity. First, the tidally circularized planets (in the 1-4 day pile-up) lie along a relation or boundary in the mass-period plane. This observation may implicate a tidal damping process regulated by planetary radius inflation and Roche lobe overflow, early in the planets' lives. Second, the host stars of many planets have spins misaligned from the planets' orbits. This observation was not expected a priori from the conventional disk migration theory, and it was a boon for the alternative theories of planet-planet scattering and Kozai cycles, accompanied by tidal friction, which predicted it. Now we are faced with a curious observation that the misalignment angle depends on the stellar temperature. It may mean that the tide raised on the stars realigns them, the final result being the tidal consumption of hot Jupiters.


2017 ◽  
Vol 154 (6) ◽  
pp. 272 ◽  
Author(s):  
Adrian S. Hamers ◽  
Scott Tremaine

2019 ◽  
Vol 486 (2) ◽  
pp. 2265-2280 ◽  
Author(s):  
Jean Teyssandier ◽  
Dong Lai ◽  
Michelle Vick

Abstract The population of giant planets on short-period orbits can potentially be explained by some flavours of high-eccentricity migration. In this paper, we investigate one such mechanism involving ‘secular chaos’, in which secular interactions between at least three giant planets push the inner planet to a highly eccentric orbit, followed by tidal circularization and orbital decay. In addition to the equilibrium tidal friction, we incorporate dissipation due to dynamical tides that are excited inside the giant planet. Using the method of Gaussian rings to account for planet–planet interactions, we explore the conditions for extreme eccentricity excitation via secular chaos and the properties of hot Jupiters formed in this migration channel. Our calculations show that once the inner planet reaches a sufficiently large eccentricity, dynamical tides quickly dissipate the orbital energy, producing an eccentric warm Jupiter, which then decays in semimajor axis through equilibrium tides to become a hot Jupiter. Dynamical tides help the planet avoid tidal disruption, increasing the chance of forming a hot Jupiter, although not all planets survive the process. We find that the final orbital periods generally lie in the range of 2–3 d, somewhat shorter than those of the observed hot Jupiter population. We couple the planet migration to the stellar spin evolution to predict the final spin-orbit misalignments. The distribution of the misalignment angles we obtain shows a lack of retrograde orbits compared to observations. Our results suggest that high-eccentricity migration via secular chaos can only account for a fraction of the observed hot Jupiter population.


2010 ◽  
Vol 6 (S276) ◽  
pp. 263-266
Author(s):  
Smadar Naoz ◽  
Will M. Farr ◽  
Yoram Lithwick ◽  
Frederic A. Rasio

AbstractMany hot Jupiters are observed to be misaligned with respect to the rotation axis of the star (as measured through the Rossiter–McLaughlin effect) and some (about ~ 25%) even appear to be in retrograde orbits. We show that the presence of an additional, moderately inclined and eccentric massive planet in the system can naturally explain close, inclined, eccentric, and even retrograde orbits. We have derived a complete and accurate treatment of the secular dynamics including both the key octupole-order effects and tidal friction. The flow of angular momentum from the inner orbit to the orbit of the perturber can lead to both high eccentricities and inclinations, and even flip the inner orbit. In our treatment the component of the inner orbit's angular momentum perpendicular to the stellar equatorial plane can change sign; a brief excursion to very high eccentricity during the chaotic evolution of the inner orbit can then lead to rapid “tidal capture,” forming a retrograde hot Jupiter. Previous treatments of the secular dynamics focusing on stellar-mass perturbers would not allow for such an outcome, since in that limit the component of the inner orbit's angular momentum perpendicular to the stellar equatorial plane is strictly conserved. Thus, the inclination of the planet's orbit could not change from prograde to retrograde.


2021 ◽  
Vol 162 (6) ◽  
pp. 263
Author(s):  
Benjamin J. Hord ◽  
Knicole D. Colón ◽  
Veselin Kostov ◽  
Brianna Galgano ◽  
George R. Ricker ◽  
...  

Abstract We present the results of a uniform search for additional planets around all stars with confirmed hot Jupiters observed by the Transiting Exoplanet Survey Satellite (TESS) in its Cycle 1 survey of the southern ecliptic hemisphere. Our search comprises 184 total planetary systems with confirmed hot Jupiters with R p > 8 R ⊕ and orbital period <10 days. The Transit Least Squares algorithm was utilized to search for periodic signals that may have been missed by other planet search pipelines. While we recovered 169 of these confirmed hot Jupiters, our search yielded no new statistically validated planetary candidates in the parameter space searched (P < 14 days). A lack of planet candidates nearby hot Jupiters in the TESS data supports results from previous transit searches of each individual system, now down to the photometric precision of TESS. This is consistent with expectations from a high-eccentricity migration formation scenario, but additional formation indicators are needed for definitive confirmation. We injected transit signals into the light curves of the hot Jupiter sample to probe the pipeline’s sensitivity to the target parameter space, finding a dependence proportional to R p 2.32 P − 0.88 for planets within 0.3 ≤ R p ≤ 4 R ⊕ and 1 ≤ P ≤ 14 days. A statistical analysis accounting for this sensitivity provides a median and 90% confidence interval of 7.3 − 7.3 + 15.2 % for the rate of hot Jupiters with nearby companions in this target parameter space. This study demonstrates how TESS uniquely enables comprehensive searches for nearby planetary companions to nearly all the known hot Jupiters.


Sign in / Sign up

Export Citation Format

Share Document