scholarly journals A Uniform Search for Nearby Planetary Companions to Hot Jupiters in TESS Data Reveals Hot Jupiters Are Still Lonely

2021 ◽  
Vol 162 (6) ◽  
pp. 263
Author(s):  
Benjamin J. Hord ◽  
Knicole D. Colón ◽  
Veselin Kostov ◽  
Brianna Galgano ◽  
George R. Ricker ◽  
...  

Abstract We present the results of a uniform search for additional planets around all stars with confirmed hot Jupiters observed by the Transiting Exoplanet Survey Satellite (TESS) in its Cycle 1 survey of the southern ecliptic hemisphere. Our search comprises 184 total planetary systems with confirmed hot Jupiters with R p > 8 R ⊕ and orbital period <10 days. The Transit Least Squares algorithm was utilized to search for periodic signals that may have been missed by other planet search pipelines. While we recovered 169 of these confirmed hot Jupiters, our search yielded no new statistically validated planetary candidates in the parameter space searched (P < 14 days). A lack of planet candidates nearby hot Jupiters in the TESS data supports results from previous transit searches of each individual system, now down to the photometric precision of TESS. This is consistent with expectations from a high-eccentricity migration formation scenario, but additional formation indicators are needed for definitive confirmation. We injected transit signals into the light curves of the hot Jupiter sample to probe the pipeline’s sensitivity to the target parameter space, finding a dependence proportional to R p 2.32 P − 0.88 for planets within 0.3 ≤ R p ≤ 4 R ⊕ and 1 ≤ P ≤ 14 days. A statistical analysis accounting for this sensitivity provides a median and 90% confidence interval of 7.3 − 7.3 + 15.2 % for the rate of hot Jupiters with nearby companions in this target parameter space. This study demonstrates how TESS uniquely enables comprehensive searches for nearby planetary companions to nearly all the known hot Jupiters.

2012 ◽  
Vol 8 (S293) ◽  
pp. 116-118
Author(s):  
Jeremy Tregloan-Reed ◽  
John Southworth

AbstractWe have developed a new model for analysing light curves of planetary transits when there are starspots on the stellar disc. Because the parameter space contains a profusion of local minima we developed a new optimisation algorithm which combines the global minimisation power of a genetic algorithm and the Bayesian statistical analysis of the Markov chain. With these tools we modelled three transit light curves of WASP-19. Two light curves were obtained on consecutive nights and contain anomalies which we confirm as being due to the same spot. Using these data we measure the star's rotation period and velocity to be 11.76 ± 0.09 d and 3.88 ± 0.15 kms−1, respectively, at a latitude of 65°. We find that the sky-projected angle between the stellar spin axis and the planetary orbital axis is λ = 1.0° ± 1.2°, indicating axial alignment. Our results are consistent with and more precise than published spectroscopic measurements of the Rossiter-McLaughlin effect.


2018 ◽  
Vol 619 ◽  
pp. A154 ◽  
Author(s):  
G. J. J. Talens ◽  
E. R. Deul ◽  
R. Stuik ◽  
O. Burggraaff ◽  
A.-L. Lesage ◽  
...  

Aims. MASCARA and bRing are photometric surveys designed to detect variability caused by exoplanets in stars with mV < 8.4. Such variability signals are typically small and require an accurate calibration algorithm, tailored to the survey, in order to be detected. This paper presents the methods developed to calibrate the raw photometry of the MASCARA and bRing stations and characterizes the performance of the methods and instruments. Methods. For the primary calibration, a modified version of the coarse decorrelation algorithm is used, which corrects for the extinction due to the earth’s atmosphere, the camera transmission, and intrapixel variations. Residual trends are removed from the light curves of individual stars using empirical secondary calibration methods. In order to optimize these methods, as well as characterize the performance of the instruments, transit signals were injected in the data. Results. After optimal calibration an RMS scatter of 10 mmag at mV ~ 7.5 is achieved in the light curves. By injecting transit signals with periods between one and five days in the MASCARA data obtained by the La Palma station over the course of one year, we demonstrate that MASCARA La Palma is able to recover 84.0, 60.5 and 20.7% of signals with depths of 2, 1 and 0.5%, respectively, with a strong dependency on the observed declination, recovering 65.4% of all transit signals at δ > 0° versus 35.8% at δ < 0°. Using the full three years of data obtained by MASCARA La Palma to date, similar recovery rates are extended to periods up to ten days. We derive a preliminary occurrence rate for hot Jupiters around A-stars of >0.4%, knowing that many hot Jupiters are still overlooked. In the era of TESS, MASCARA and bRing will provide an interesting synergy for finding long-period (>13.5 days) transiting gas-giant planets around the brightest stars.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844013 ◽  
Author(s):  
Pavel Minaev ◽  
Alexei Pozanenko ◽  
Sergei Molkov

We have analyzed the light curves of 527 short gamma-ray bursts (GRBs) registered by the SPI-ACS, SPI and IBIS/ISGRI experiments of INTEGRAL observatory totally to search for precursors. Both the light curves of each 527 individual burst and the averaged light curve of 372 brightest SPI-ACS bursts have been analyzed. In a few cases, we have found and investigated precursor candidates using SPI-ACS, SPI and IBIS/ISGRI of INTEGRAL, GBM and LAT of Fermi data. No convincing evidence for the existence of precursors of short GRBs has been found. A statistical analysis of the averaged light curve for the sample of brightest short bursts has revealed no regular precursor. Upper limits for the relative intensity of precursors have been estimated. We show that the fraction of short GRBs with precursors is less than 0.4% of all short bursts, detected by INTEGRAL.


2020 ◽  
Vol 497 (1) ◽  
pp. 855-864
Author(s):  
Dmitry Shishkin ◽  
Noam Soker

ABSTRACT We simulate the evolution of eccentric binary systems in the frame of the grazing envelope evolution (GEE) channel for the formation of Type IIb supernovae (SNe IIb), and find that extra mass removal by jets increases the parameter space for the formation of SNe IIb in this channel. To explore the role of eccentricity and the extra mass removal by jets, we use the stellar evolutionary code mesa binary. The initial primary and secondary masses are M1, i = 15 and M2, i = 2.5 M⊙. We examine initial semimajor axes of 600–1000 R⊙, and eccentricities of e = 0–0.9. Both Roche lobe overflow (RLOF) and mass removal by jets, followed by a wind, leave a hydrogen mass in the exploding star of MH, f ≈ 0.05 M⊙, compatible with an SN IIb progenitor. When the initial orbit is not circular, the final orbit might have a very high eccentricity. In many cases, with and without the extra mass removal by jets, the system can enter a common envelope evolution (CEE) phase, and then gets out from it. For some ranges of eccentricities, the jets are more efficient in preventing the CEE. Despite the large uncertainties, extra mass removal by jets substantially increases the likelihood of the system to get out from a CEE. This strengthens earlier conclusions for circular orbits. In some cases, RLOF alone, without mass removal by jets, can form SN IIb progenitors. We estimate that the extra mass removal by jets in the GEE channel increases the number of progenitors relative to that by RLOF alone by about a factor of 2.


2008 ◽  
Vol 4 (S253) ◽  
pp. 163-169
Author(s):  
Aaron S. Wolf ◽  
Darin Ragozzine

AbstractAccurately understanding the interior structure of extra-solar planets is critical for inferring their formation and evolution and resolving the origin of anomalous planetary radii. The internal density distribution of the planet has a direct effect on the star-planet orbit through the gravitational quadrupole of rotational and tidal bulges, measured by the planetary Love number (k2p, twice the apsidal motion constant). We find that the quadrupole of the planetary tidal bulges dominates the rate of apsidal precession of single very hot Jupiters by more than an order of magnitude over general relativity and the stellar quadrupole. For the shortest-period planets, the planetary interior induces precession of a few degrees per year. By investigating the full photometric signal of apsidal precession, we find that transit timing induces a relatively small signal compared to the changes in transit shapes. With its long baseline of ultra-precise photometry, the future space-based Kepler mission should be able to realistically detect the presence or absence of a core in very hot Jupiters with orbital eccentricities as low as e ~ 0.001. We show that the signal due to k2p is not degenerate with other parameters and has a unique signature on the transit light curve. This technique, outlined in more detail in Ragozzine & Wolf 2008 provides the first readily employed method for directly probing the interiors of extra-solar planets.


2010 ◽  
Vol 6 (S276) ◽  
pp. 252-257
Author(s):  
Daniel C. Fabrycky

AbstractTransits give us the mass, radius, and orbital properties of the planet, all of which inform dynamical theories. Two properties of the hot Jupiters suggest they had a dramatic origin via tidal damping from high eccentricity. First, the tidally circularized planets (in the 1-4 day pile-up) lie along a relation or boundary in the mass-period plane. This observation may implicate a tidal damping process regulated by planetary radius inflation and Roche lobe overflow, early in the planets' lives. Second, the host stars of many planets have spins misaligned from the planets' orbits. This observation was not expected a priori from the conventional disk migration theory, and it was a boon for the alternative theories of planet-planet scattering and Kozai cycles, accompanied by tidal friction, which predicted it. Now we are faced with a curious observation that the misalignment angle depends on the stellar temperature. It may mean that the tide raised on the stars realigns them, the final result being the tidal consumption of hot Jupiters.


2020 ◽  
Vol 499 (4) ◽  
pp. 5151-5162
Author(s):  
Megan Mansfield ◽  
Everett Schlawin ◽  
Jacob Lustig-Yaeger ◽  
Arthur D Adams ◽  
Emily Rauscher ◽  
...  

ABSTRACT Planetary atmospheres are inherently 3D objects that can have strong gradients in latitude, longitude, and altitude. Secondary eclipse mapping is a powerful way to map the 3D distribution of the atmosphere, but the data can have large correlations and errors in the presence of photon and instrument noise. We develop a technique to mitigate the large uncertainties of eclipse maps by identifying a small number of dominant spectra to make them more tractable for individual analysis via atmospheric retrieval. We use the eigencurves method to infer a multiwavelength map of a planet from spectroscopic secondary eclipse light curves. We then apply a clustering algorithm to the planet map to identify several regions with similar emergent spectra. We combine the similar spectra together to construct an ‘eigenspectrum’ for each distinct region on the planetary map. We demonstrate how this approach could be used to isolate hot from cold regions and/or regions with different chemical compositions in observations of hot Jupiters with the James Webb Space Telescope (JWST). We find that our method struggles to identify sharp edges in maps with sudden discontinuities, but generally can be used as a first step before a more physically motivated modelling approach to determine the primary features observed on the planet.


2019 ◽  
Vol 622 ◽  
pp. A71 ◽  
Author(s):  
C. von Essen ◽  
M. Mallonn ◽  
L. Welbanks ◽  
N. Madhusudhan ◽  
A. Pinhas ◽  
...  

There has been increasing progress toward detailed characterization of exoplanetary atmospheres, in both observations and theoretical methods. Improvements in observational facilities and data reduction and analysis techniques are enabling increasingly higher quality spectra, especially from ground-based facilities. The high data quality also necessitates concomitant improvements in models required to interpret such data. In particular, the detection of trace species such as metal oxides has been challenging. Extremely irradiated exoplanets (~3000 K) are expected to show oxides with strong absorption signals in the optical. However, there are only a few hot Jupiters where such signatures have been reported. Here we aim to characterize the atmosphere of the ultra-hot Jupiter WASP-33 b using two primary transits taken 18 orbits apart. Our atmospheric retrieval, performed on the combined data sets, provides initial constraints on the atmospheric composition of WASP-33 b. We report a possible indication of aluminum oxide (AlO) at 3.3-σ significance. The data were obtained with the long slit OSIRIS spectrograph mounted at the 10-m Gran Telescopio Canarias. We cleaned the brightness variations from the light curves produced by stellar pulsations, and we determined the wavelength-dependent variability of the planetary radius caused by the atmospheric absorption of stellar light. A simultaneous fit to the two transit light curves allowed us to refine the transit parameters, and the common wavelength coverage between the two transits served to contrast our results. Future observations with HST as well as other large ground-based facilities will be able to further constrain the atmospheric chemical composition of the planet.


Sign in / Sign up

Export Citation Format

Share Document