scholarly journals Prospects of Gravitational Wave Detections from Common Envelope Evolution with LISA

2021 ◽  
Vol 919 (2) ◽  
pp. 128
Author(s):  
M. Renzo ◽  
T. Callister ◽  
K. Chatziioannou ◽  
L. A. C. van Son ◽  
C. M. F. Mingarelli ◽  
...  
2020 ◽  
Vol 493 (4) ◽  
pp. 4861-4867 ◽  
Author(s):  
Yonadav Barry Ginat ◽  
Hila Glanz ◽  
Hagai B Perets ◽  
Evgeni Grishin ◽  
Vincent Desjacques

ABSTRACT Detection of gravitational-wave (GW) sources enables the characterization of binary compact objects (COs) and of their in-spiral. However, other dissipative processes can affect the in-spiral. Here, we show that the in-spiral of COs through a gaseous common envelope (CE) arising from an evolved stellar companion produces a novel type of GW sources, whose evolution is dominated by the dissipative gas dynamical friction effects from the CE, rather than the GW emission itself. The evolution and properties of the GW signals differ from those of isolated gas-poor mergers significantly. We find characteristic strains of ∼10−23–10−21 ($10\, {\rm kpc}/{D}$) for such sources – observable by next-generation space-based GW detectors (at rates of once per a few centuries for LISA, and about once a year for BBO). The evolution of the GW signal can serve as a probe of the interior regions of the evolved star, and the final stages of CE evolution, otherwise inaccessible through other observational means. Moreover, such CE mergers are frequently followed by observable explosive electromagnetic counterparts and/or the formation of exotic stars.


2020 ◽  
Vol 635 ◽  
pp. A97 ◽  
Author(s):  
Simone S. Bavera ◽  
Tassos Fragos ◽  
Ying Qin ◽  
Emmanouil Zapartas ◽  
Coenraad J. Neijssel ◽  
...  

Context. After years of scientific progress, the origin of stellar binary black holes is still a great mystery. Several formation channels for merging black holes have been proposed in the literature. As more merger detections are expected with future gravitational-wave observations, population synthesis studies can help to distinguish between them. Aims. We study the formation of coalescing binary black holes via the evolution of isolated field binaries that go through the common envelope phase in order to obtain the combined distributions of observables such as black-hole spins, masses and cosmological redshifts of mergers. Methods. To achieve this aim, we used a hybrid technique that combines the parametric binary population synthesis code COMPAS with detailed binary evolution simulations performed with the MESA code. We then convolved our binary evolution calculations with the redshift- and metallicity-dependent star-formation rate and the selection effects of gravitational-wave detectors to obtain predictions of observable properties. Results. By assuming efficient angular momentum transport, we are able to present a model that is capable of simultaneously predicting the following three main gravitational-wave observables: the effective inspiral spin parameter χeff, the chirp mass Mchirp and the cosmological redshift of merger zmerger. We find an excellent agreement between our model and the ten events from the first two advanced detector observing runs. We make predictions for the third observing run O3 and for Advanced LIGO design sensitivity. We expect approximately 80% of events with χeff <  0.1, while the remaining 20% of events with χeff ≥ 0.1 are split into ∼10% with Mchirp <  15 M⊙ and ∼10% with Mchirp ≥ 15 M⊙. Moreover, we find that Mchirp and χeff distributions are very weakly dependent on the detector sensitivity. Conclusions. The favorable comparison of the existing LIGO/Virgo observations with our model predictions gives support to the idea that the majority, if not all of the observed mergers, originate from the evolution of isolated binaries. The first-born black hole has negligible spin because it lost its envelope after it expanded to become a giant star, while the spin of the second-born black hole is determined by the tidal spin up of its naked helium star progenitor by the first-born black hole companion after the binary finished the common-envelope phase.


2018 ◽  
Vol 616 ◽  
pp. A28 ◽  
Author(s):  
Y. Qin ◽  
T. Fragos ◽  
G. Meynet ◽  
J. Andrews ◽  
M. Sørensen ◽  
...  

Context. Various binary black hole formation channels have been proposed since the first gravitational event GW150914 was discovered by the Advanced Laser Interferometer Gravitational-Wave Observatory (AdLIGO). The immediate progenitor of the binary black hole is a close binary system composed of a black hole and a helium star, which can be the outcome of the classical isolated binary evolution through the common envelope, or alternatively of the massive close evolution through chemically homogeneous channel. Aims. We study the spin angular momentum evolution of the helium star in order to constrain the spin of the second-born black hole. This work focuses on the common envelope formation channel, however, some of our conclusions are also relevant for the chemically homogeneous evolution channel. Methods. We perform detailed stellar structure and binary evolution calculations that take into account, mass-loss, internal differential rotation, and tidal interactions between the helium star and the black hole companion, where we also calculate the strength of the tidal interactions from first principles based on the structure of the helium stars. We systematically explore the parameter space of initial binary properties, including initial black hole and helium star masses, initial rotation of the helium star as well as metallicity. Results. We argue that the natal spin of the first-born black hole through the common envelope scenario is negligible (≲0.1), and therefore the second-born black hole’s spin dominates the measured effective spin, χeff, from gravitational wave events of double black hole mergers. We find that tides can be only important when orbital periods are shorter than 2 days. Upon core collapse, the helium star produces a black hole (the second-born black hole in the system) with a spin that can span the entire range from zero to maximally spinning. We show that the bimodal distribution of the spin of the second-born black hole obtained in recent papers is mainly due to oversimplifying assumptions. We find an anti-correlation between the merging timescale of the two black holes, Tmerger, and the effective spin χeff. Finally, we provide new prescriptions for the tidal coefficient E2 for both H-rich and the He-rich stars. Conclusions. To understand the spin of the second-born black hole, careful treatment of both tides and stellar winds is needed. We predict that, with future improvements to AdLIGO’s sensitivity, the sample of merging binary black hole systems will show an overdensity of sources with positive but small χeff originating from lower-mass black hole mergers born at low redshift.


2016 ◽  
pp. 4422-4429
Author(s):  
C. Y. Lo

It is exciting that the gravitational wave has been confirmed, according to the announcement of LIGO. This would be the time to fix the Einstein equation for the gravitational wave and the nonexistence of the dynamic solution. As a first step, theorists should improve their pure mathematics on non-linear mathematics and related physical considerations beyond Einstein. Then, it is time to rectify the Einstein equation that has no gravitational wave solution which Einstein has recognized, and no dynamic solution that Einstein failed to see. A problem is that physicists in LIGO did not know their shortcomings. Also, in view of the far distance of the sources, it is very questionable that the physicists can determine they are from black holes. Moreover, since the repulsive gravitation can also generate a gravitational wave, the problem of gravitational wave is actually far more complicated than we have known. A useful feature of the gravitational wave based on repulsive gravitation is that it can be easily generated on earth. Thus this can be a new tool for communication because it can penetrate any medium.


Sign in / Sign up

Export Citation Format

Share Document