scholarly journals A New Discrete Implicit Monte Carlo Scheme for Simulating Radiative Transfer Problems

2022 ◽  
Vol 258 (1) ◽  
pp. 14
Author(s):  
Elad Steinberg ◽  
Shay I. Heizler

Abstract We present a new algorithm for radiative transfer—based on a statistical Monte Carlo approach—that does not suffer from teleportation effects, on the one hand, and yields smooth results, on the other hand. Implicit Monte Carlo (IMC) techniques for modeling radiative transfer have existed from the 1970s. When they are used for optically thick problems, however, the basic algorithm suffers from “teleportation” errors, where the photons propagate faster than the exact physical behavior, due to the absorption-blackbody emission processes. One possible solution is to use semianalog Monte Carlo, in its new implicit form (ISMC), which uses two kinds of particles, photons and discrete material particles. This algorithm yields excellent teleportation-free results, but it also produces noisier solutions (relative to classic IMC), due to its discrete nature. Here, we derive a new Monte Carlo algorithm, Discrete Implicit Monte Carlo (DIMC), which also uses the idea of two kinds of discrete particles, and thus does not suffer from teleportation errors. DIMC implements the IMC discretization and creates new radiation photons for each time step, unlike ISMC. Using the continuous absorption technique, DIMC yields smooth results like classic IMC. One of the main elements of the algorithm is the avoidance of the explosion of the particle population, by using particle merging. We test the new algorithm on 1D and 2D cylindrical problems, and show that it yields smooth, teleportation-free results. We finish by demonstrating the power of the new algorithm on a classic radiative hydrodynamic problem—an opaque radiative shock wave. This demonstrates the power of the new algorithm for astrophysical scenarios.

2017 ◽  
Author(s):  
Christoph Köhn ◽  
Martin Bødker Enghoff ◽  
Henrik Svensmark

Abstract. The nucleation of sulphuric acid molecules plays a key role in the formation of aerosols. We here present a three dimensional particle Monte Carlo model to study the growth of sulphuric acid clusters as well as its dependence on the ambient temperature and the initial particle density.We initiate a swarm of sulphuric acid molecules with a size of 0.15 nm with densities between 107 and 108 cm−3 at temperatures of 200 and 300 K. After every time step, we update the position and velocity of particles as a function of size-dependent diffusion coefficients. If two particles encounter, we merge them and add their volumes and masses. Inversely, we check after every time step whether a polymer evaporates liberating a molecule.We present the spatial distribution as well as the size distribution calculated from individual clusters. We also calculate the nucleation rate of clusters with a radius of 0.85 nm as a function of time, initial particle density and temperature. For 200 K, the nucleation rate increases as a function of time; for 300 K we observe an interplay between clustering and evaporation and thus the oscillation of the nucleation rate around the mean nucleation rate. The nucleation rates obtained from the presented model agree well with experimentally obtained values which serves as a benchmark of our code. In contrast to previous nucleation models, we here present for the first time a code capable of tracing individual particles and thus of capturing the physics related to the discrete nature of particles.


1993 ◽  
Vol 99 (4) ◽  
pp. 2865-2890 ◽  
Author(s):  
C. J. Umrigar ◽  
M. P. Nightingale ◽  
K. J. Runge

2014 ◽  
Vol 43 (1-7) ◽  
pp. 314-335 ◽  
Author(s):  
H. Park ◽  
D. A. Knoll ◽  
R. M. Rauenzahn ◽  
A. B. Wollaber ◽  
R. B. Lowrie

1999 ◽  
Author(s):  
Z.-M. Tan ◽  
P.-F. Hsu

Abstract Numerical computations are performed for the transient radiative transfer equation within the one-dimensional parallel plate geometry using an integral formulation obtained in a prior work. The medium under consideration is absorbing and isotropically scattering. One boundary is a black emitting surface or a transparent surface subjected to the collimated incident radiation. The incident intensity is applied at the start of the transient. The other boundary is a cold and black or specularly reflecting surface. The spatial and temporal incident radiation and radiative flux distributions are presented for different boundary conditions and for uniform and nonuniform property distribution. The transient results at large time step are compared with steady-state solutions by the finite volume and quadrature methods and show excellent agreement. The solutions of reflecting boundary condition exhibit distinctive behavior from that of the non-reflecting boundary. The integral formulation is extended to handle the transient transfer within the nonhomogeneous participating media. The integral formulation has several advantages over the differential treatment of the hyperbolic wave of the radiative transport; among others: (1) The avoidance of using a high order upwind difference scheme in resolving the wave front; (2) Providing a sound basis for physical interpretation as the radiative transfer is a volumetric process; and (3) Many integral equation numerical methods that have previously been developed for the steady state integral formulation can be re-applied to treat the transient problem.


Sign in / Sign up

Export Citation Format

Share Document