small time step
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 647
Author(s):  
Roland Riek

The second law of thermodynamics, with its positive change of entropy for a system not in equilibrium, defines an arrow of time. Interestingly, also, causality, which is the connection between a cause and an effect, requests a direction of time by definition. It is noted that no other standard physical theories show this property. It is the attempt of this work to connect causality with entropy, which is possible by defining time as the metric of causality. Under this consideration that time appears only through a cause–effect relationship (“measured”, typically, in an apparatus called clock), it is demonstrated that time must be discrete in nature and cannot be continuous as assumed in all standard theories of physics including general and special relativity, and classical physics. The following lines of reasoning include: (i) (mechanical) causality requests that the cause must precede its effect (i.e., antecedence) requesting a discrete time interval >0. (ii) An infinitely small time step d t > 0 is thereby not sufficient to distinguish between cause and effect as a mathematical relationship between the two (i.e., Poisson bracket) will commute at a time interval d t , while not evidently within discrete time steps Δ t . As a consequence of a discrete time, entropy emerges (Riek, 2014) connecting causality and entropy to each other.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401985558 ◽  
Author(s):  
Liyang Xu ◽  
Xinhai Xu ◽  
Xiaoguang Ren ◽  
Yunrui Guo ◽  
Yongquan Feng ◽  
...  

In this work, we deal with high-order solver for incompressible flow based on velocity correction scheme with discontinuous Galerkin discretized velocity and standard continuous approximated pressure. Recently, small time step instabilities have been reported for pure discontinuous Galerkin method, in which both velocity and pressure are discretized by discontinuous Galerkin. It is interesting to examine these instabilities in the context of mixed discontinuous Galerkin–continuous Galerkin method. By means of numerical investigation, we find that the discontinuous Galerkin–continuous Galerkin method shows great stability at the same configuration. The consistent velocity divergence discretization scheme helps to achieve more accurate results at small time step size. Since the equal order discontinuous Galerkin–continuous Galerkin method does not satisfy inf-sup stability requirement, the instability for high Reynolds number flow is investigated. We numerically demonstrate that fine mesh resolution and high polynomial order are required to obtain a robust system. With these conclusions, discontinuous Galerkin–continuous Galerkin method is able to achieve high-order spatial convergence rate and accurately simulate high Reynolds flow. The solver is tested through a series of classical benchmark problems, and efficiency improvement is proved against pure discontinuous Galerkin scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Xinhua Lu ◽  
Bingjiang Dong ◽  
Bing Mao ◽  
Xiaofeng Zhang

The first-order Lax-Friedrichs (LF) scheme is commonly used in conjunction with other schemes to achieve monotone and stable properties with lower numerical diffusion. Nevertheless, the LF scheme and the schemes devised based on it, for example, the first-order centered (FORCE) and the slope-limited centered (SLIC) schemes, cannot achieve a time-step-independence solution due to the excessive numerical diffusion at a small time step. In this work, two time-step-convergence improved schemes, the C-FORCE and C-SLIC schemes, are proposed to resolve this problem. The performance of the proposed schemes is validated in solving the one-layer and two-layer shallow-water equations, verifying their capabilities in attaining time-step-independence solutions and showing robustness of them in resolving discontinuities with high-resolution.


Author(s):  
Kaijian Ou ◽  
Trevor Maguire ◽  
Bruce Warkentin ◽  
Yuan Chen ◽  
Yi Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document