Validation of Dynamic Contact Angle using Continuum Surface Force Model in MPS

Author(s):  
Takahiro Yamakawa ◽  
Seiichi Koshizuka ◽  
Mikio Sakai
2021 ◽  
Author(s):  
Lin Lin ◽  
Hui Huang

Abstract The significance of liquid for abrasive wire sawing has been demonstrated by researchers with considerable studies. However, its performance in the spreading behavior is limited by the development trend of larger area wafer and narrower slicing kerf. Nevertheless, studies on the liquid spreading behavior in the wire sawing kerf are awfully limited. In this paper, a 3D CFD (Computational Fluid Dynamics) model was presented to simulate the liquid spreading behavior in the kerf. Where a VOF (Volume of Fluid) method with a CSF (Continuum Surface Force) model is used to simulate multiphase flow, and an empirical correlation for characterizing the liquid dynamic contact angle is introduced using UDF (User Defined Functions). Parametric simulations were performed on the kerf area, kerf width, liquid viscosity, liquid surface tension and liquid velocity at the inlet area of the kerf. Verification experiments are conducted for the validity of the simulation model. From both simulation and experimental results, three typical liquid spreading regimes in the kerfs are found, which perform distinct different effects on wire sawing. Moreover, the limiting conditions of the three spreading regimes are identified by non-dimensional analysis, then a prediction model is proposed for the liquid spreading regime, by given a set of Weber number and Capillary number. For wire sawing, the increase in the wafer area will not change the liquid spreading regime in the kerf, but the reduction of the kerf width will significantly hinder the liquid spreading behavior. By adjusting the physical properties and supply conditions of the liquid, the spreading regime can be effectively converted to facilitate wire sawing.


Author(s):  
O.N Goncharova ◽  
◽  
I.V. Marchuk ◽  
A.V. Zakurdaeva ◽  
◽  
...  

2013 ◽  
Vol 333-335 ◽  
pp. 2004-2009
Author(s):  
Lin Ling Jiang ◽  
Wei Mo ◽  
Xiao Jing Yang ◽  
Tian Li Xue ◽  
Shao Jian Ma

To better understand the sedimentation processes of bentonite, the sedimentation characteristic of bentonite suspension was studied by using the sedimentation analysis module of Dynamic Contact Angle Meter and Tensiometer. The results indicated that sedimentation characteristics of bentonite suspension were affected by the concentration and pH values of the suspension together with the dosage of dispersants. The natural sedimentation rates of bentonite suspension declined firstly with prolonging the sedimentation time and soon stabilized after about 50s. The sedimentation weight of particles hardly changed when the concentration ranged from 0.5% to 5.0%, while it increased significantly when ranged from 5.0% to 10.0%. The sedimentation weight and rate were relatively bigger at 4.4, 11.8 than that of 6.0, 7.9, and the maximum values appeared at pH11.8. Adding sodium pyrophosphate could improve the dispersibility of bentonite suspension.


Polymer ◽  
1996 ◽  
Vol 37 (16) ◽  
pp. 3659-3664 ◽  
Author(s):  
T. Kasemura ◽  
S. Takahashi ◽  
N. Nakane ◽  
T. Maegawa

Sign in / Sign up

Export Citation Format

Share Document