Experimental and Numerical Simulation of Thin Shells subject to Explosive Loadings in the Context of Severe Accident Analysis for Sodium Fast Reactor

Author(s):  
P. Chellapandi
2021 ◽  
Vol 150 ◽  
pp. 107820
Author(s):  
Jun Ho Bae ◽  
Dong Gun Son ◽  
Ki Hyun Kim ◽  
Jun Young Kang ◽  
Yong Mann Song ◽  
...  

2011 ◽  
Author(s):  
Juan Carbajo ◽  
Hae-Yong Jeong ◽  
Roald Wigeland ◽  
Michael Corradini ◽  
Rodney Cannon Schmidt ◽  
...  

Author(s):  
Liancheng Guo ◽  
Andrei Rineiski

To avoid settling of molten materials directly on the vessel wall in severe accident sequences, the implementation of a ‘core catcher’ device in the lower plenum of sodium fast reactor designs is considered. The device is to collect, retain and cool the debris, created when the corium falls down and accumulates in the core catcher, while interacting with surrounding coolant. This Fuel-Coolant Interaction (FCI) leads to a potentially energetic heat and mass transfer process which may threaten the vessel integrity. For simulations of severe accidents, including FCI, the SIMMER code family is employed at KIT. SIMMER-III and SIMMER-IV are advanced tools for the core disruptive accidents (CDA) analysis of liquid-metal fast reactors (LMFRs) and other GEN-IV systems. They are 2D/3D multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics codes coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model. However, the experience of SIMMER application to simulation of corium relocation and related FCI is limited. It should be mentioned that the SIMMER code was not firstly developed for the FCI simulation. However, the related models show its basic capability in such complicate multiphase phenomena. The objective of the study was to preliminarily apply this code in a large-scale simulation. An in-vessel model based on European Sodium Fast Reactor (ESFR) was established and calculated by the SIMMER code. In addition, a sensitivity analysis on some modeling parameters is also conducted to examine their impacts. The characteristics of the debris in the core catcher region, such as debris mass and composition are compared. Besides that, the pressure history in this region, the mass of generated sodium vapor and average temperature of liquid sodium, which can be considered as FCI quantitative parameters, are also discussed. It is expected that the present study can provide some numerical experience of the SIMMER code in plant-scale corium relocation and related FCI simulation.


Author(s):  
Andrei Rineiski ◽  
Clément Mériot ◽  
Marco Marchetti ◽  
Jiri Krepel ◽  
Christine Coquelet ◽  
...  

Abstract A large 3600 MW-thermal European Sodium Fast Reactor (ESFR) concept has been studied in Horizon-2020 ESFR-SMART (ESFR Safety Measures Assessment and Research Tools) project since September 2017, following an earlier EURATOM project, CP-ESFR. In the paper, we describe new ESFR core safety measures focused on prevention and mitigation of severe accidents. In particular, we propose a new core configuration for reducing the sodium void effect, introduce passive shutdown systems, and implement special paths in the core for facilitation of molten fuel discharge in order to avoid re-criticalities after a hypothetical severe accident. We describe and assess the control and shutdown system, and consider options for burning minor actinides.


2014 ◽  
Vol 185 (1) ◽  
pp. 21-38 ◽  
Author(s):  
M. Guyot ◽  
P. Gubernatis ◽  
C. Suteau ◽  
R. Le Tellier ◽  
J. Lecerf

Author(s):  
Franco Polidoro ◽  
Flavio Parozzi

Considering a reasonable range of core meltdown accidents that can be postulated for GenIV sodium fast reactors, good safety margins exist for corium confinement and cooling inside the reactor vessel. Coolable conditions can be reached with the adoption of an ad-hoc device in the lower plenum, i.e. core catcher, capable to intercept the downward motion of the molten material and assure its cooling. Such device has to be designed to withstand to extreme thermal-mechanical conditions that rise as consequence of the large mechanical energy release and high temperature of molten corium. As this study has been carried out in the frame of the Collaborative Project on European Sodium Fast Reactor (CP ESFR) of the 7th Framework Programme Euratom, on the basis of the postulated accident conditions assumed for a reference 1500 MWe pool-type sodium fast reactor, the present work provides a preliminary analysis of the thermal response of a possible core catcher placed within the vessel. The dynamic thermal behaviour of the corium-structure-coolant system is analyzed with the computer code CORIUM-2D, an original simulation tool developed by RSE - Ricerca Sul Sistema Energetico, with the aim to assess the thermal interaction among corium, structures and coolant under severe accident conditions in both Light Water Reactors (LWRs) and Liquid Metal Fast Breeder Reactors (LMFBRs). The results of the numerical simulations show that the steady-state coolable configuration of core debris and the structural integrity of main containment structures can be reached in a number of partial core meltdown situations.


Sign in / Sign up

Export Citation Format

Share Document