minor actinides
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 49)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 13 (22) ◽  
pp. 12643
Author(s):  
Hamid Aït Abderrahim ◽  
Michel Giot

Closing the nuclear fuel cycle and transmuting Minor Actinides (M.As) can be considered as an application of the duty of care principlel principle which says that, “before the final disposal of any waste, any possible chemical and/or physical treatment has to be applied in order to reduce the waste’s toxicity, provided the treatment does not convey unacceptable risks or unacceptable costs”. Forty years of complex research and development has shown that Accelerator Driven Systems could provide a solution to the challenge posed by spent nuclear fuels, by enabling the ability to considerably decrease their radiotoxicity lifetime burden and volume. In particular, a multilateral strategy of treatment of the MAs could be a commendable solution for both the countries phasing out the exploitation of nuclear energy and for those pursuing and developing this exploitation. The pre-industrial assessment of the technical and financial feasibility for industrialization is the next step. This applies to the four R&D and Demonstration building blocks: advanced separation, MAs’ loaded fuel fabrication, dedicated transmuters demonstration (MYRRHA) and provision for MAs’ fuel loaded processing. A global vision of the process leading to a sustainable option is proposed.


2021 ◽  
Vol 382 ◽  
pp. 111379
Author(s):  
M.V. Skupov ◽  
A.E. Glushenkov ◽  
B.A. Tarasov ◽  
S.V. Abramov ◽  
M.A. Kuzin ◽  
...  
Keyword(s):  

Author(s):  
Andrei Rineiski ◽  
Clément Mériot ◽  
Marco Marchetti ◽  
Jiri Krepel ◽  
Christine Coquelet ◽  
...  

Abstract A large 3600 MW-thermal European Sodium Fast Reactor (ESFR) concept has been studied in Horizon-2020 ESFR-SMART (ESFR Safety Measures Assessment and Research Tools) project since September 2017, following an earlier EURATOM project, CP-ESFR. In the paper, we describe new ESFR core safety measures focused on prevention and mitigation of severe accidents. In particular, we propose a new core configuration for reducing the sodium void effect, introduce passive shutdown systems, and implement special paths in the core for facilitation of molten fuel discharge in order to avoid re-criticalities after a hypothetical severe accident. We describe and assess the control and shutdown system, and consider options for burning minor actinides.


2021 ◽  
Author(s):  
Alexey V. Zhirkin ◽  
V P Budaev ◽  
Alexander O Goltsev ◽  
Alexey V Dedov ◽  
Alexander T Komov ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 16-26
Author(s):  
Vinh Thanh Tran ◽  
Thanh Mai Vu ◽  
Van Khanh Hoang ◽  
Viet Ha Pham Nhu

The feasibility of transmutation of minor actinides recycled from the spent nuclear fuel in the VVER-1000 LEU (low enriched uranium) fuel assembly as burnable poison was examined in our previous study. However, only the minor actinide vector of the VVER-440 spent fuel was considered. In this paper, various vectors of minor actinides recycled from the spent fuel of VVER-440, PWR-1000, and VVER-1000 reactors were therefore employed in the analysis in order to investigate the minor actinide transmutation efficiency of the VVER-1000 fuel assembly with different minor actinide compositions. The comparative analysis was conducted for the two models of minor actinide loading in the LEU fuel assembly: homogeneous mixing in the UGD (Uranium-Gadolinium) pins and coating a thin layer to the UGD pins. The parameters to be analysed and compared include the reactivity of the LEU fuel assembly versus burnup and the transmutation of minor actinide nuclides when loading different minor actinide vectors into the LEU fuel assembly.


2021 ◽  
Vol 381 ◽  
pp. 111350
Author(s):  
Rogelio Castillo ◽  
Gustavo Alonso ◽  
Eduardo Martinez ◽  
Ramón Ramírez ◽  
Estela Mayoral

Kerntechnik ◽  
2021 ◽  
Vol 86 (4) ◽  
pp. 302-311
Author(s):  
M. E. Korkmaz ◽  
N. K. Arslan

Abstract Sodium Cooled Reactors is one of the Generation-IV plants selected to manage the long-lived minor actinides and to transmute the long-life radioactive elements. This study presents the comparison between two-designed SFR cores with 600 and 800 MWth total heating power. We have analyzed a conceptual core design and nuclear characteristic of SFR. Monte Carlo depletion calculations have been performed to investigate essential characteristics of the SFR core. The core calculations were performed by using the Serpent Monte Carlo code for determining the burnup behavior of the SFR, the power distribution and the effective multiplication factor. The neutronic and burn-up calculations were done by means of Serpent-2 Code with the ENDF-7 cross-sections library. Sodium Cooled Fast Reactor core was taken as the reference core for Th-232 burnup calculations. The results showed that SFR is an important option to deplete the minor actinides as well as for transmutation from Th-232 to U-233.


Sign in / Sign up

Export Citation Format

Share Document