scholarly journals NMR Studies on Cyclic Arsenites. 13C NMR Spectra of Twenty-one 1,3,2-Dioxarsenanes. Substituent Effects of Alkyl and Phenyl Groups on the Chemical Shifts of the Ring Carbons.

1979 ◽  
Vol 33a ◽  
pp. 753-758 ◽  
Author(s):  
Dagfinn W. Aksnes ◽  
Oddmund Strømme ◽  
Ralf Steudel
2018 ◽  
Vol 69 (1) ◽  
pp. 64-69
Author(s):  
Liviu Birzan ◽  
Mihaela Cristea ◽  
Constantin C. Draghici ◽  
Alexandru C. Razus

The 1H and 13C NMR spectra of several 2,6-diheteroarylvinyl heterocycles containing 4-azulenyl moiety were recorded and their proton and carbon chemical shifts were compared with those of the compounds without double bond between the heterocycles. The influence of the nature of central and side heterocycles, molecule polarization and anisotropic effects were revealed. The highest chemical shifts were recorded for the pyrylium salts and the lowest at pyridines, but in the case of the pyridinium salts, the protons chemical shifts at the central heterocycle are more shielded due to a peculiar anisotropy of the attached vinyl groups.


1986 ◽  
Vol 51 (3) ◽  
pp. 670-676 ◽  
Author(s):  
Eva Solčániová ◽  
Štefan Toma ◽  
Tibor Liptaj

13C NMR spectra of 18 ferrocene analogues of trans stilbenes (1-aryl-2-ferrocenylethylenes) were measured. It was found that bridge group weakens the transfer of the substituent electron effects into ferrocene nucleus, especially distinctly into 3',4'positions of cyclopentadienyl ring. The transfer of substituent effects into β-position of the bridge -CH=CH- is greater in derivatives studied by us than in stilbenes. Synthesis of 1-(4-dimethylaminophenyl)-2-ferrocenylethylene is described.


1988 ◽  
Vol 53 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Antonín Lyčka ◽  
Josef Jirman ◽  
Jaroslav Holeček

The 17O and 13C NMR spectra of eight geminal diacetates RCH(O(CO)CH3)2 derived from simple aldehydes have been measured. In contrast to the dicarboxylates R1R2E(O(CO)R3)2, where E = Si, Ge, or Sn, whose 17O NMR spectra only contain a single signal, and, on the other hand, in accordance with organic carboxylic esters, the 17O NMR spectra of the compound group studied always exhibit two well-resolved signals with the chemical shifts δ(17O) in the regions of 183-219 ppm and 369-381 ppm for the oxygen atoms in the groups C-O and C=O, respectively.


1990 ◽  
Vol 55 (8) ◽  
pp. 2027-2032 ◽  
Author(s):  
Jan Schraml ◽  
Robert Brežný ◽  
Jan Čermák

29Si and 13C NMR spectra of five 4-substituted 2,6-dimethoxytrimethylsiloxybenzenes were studied with the aim to elucidate the nature of the deshielding proximity effects observed in the spectra of ortho substituted trimethylsiloxybenzenes. The sensitivity of 29Si chemical shifts to para substitution is in the studied compounds essentially the same as in mono ortho methoxytrimethylsiloxybenzenes. The deshielding proximity effect of the ìsecondî methoxy group is somewhat smaller than that of the ìfirstî group. The present results indicate that the two methoxy groups assume coplanar conformations with the benzene ring and are turned away from the trimethylsiloxy group which is not in the benzene plane. It is argued that in mono ortho methoxytrimethylsiloxybenzenes the two substituent groups adopt the same conformations as in the compounds studied here.


2020 ◽  
Vol 100 (4) ◽  
pp. 60-74
Author(s):  
А.А. Bakibaev ◽  
◽  
М.Zh. Sadvakassova ◽  
V.S. Malkov ◽  
R.Sh. Еrkasov ◽  
...  

A wide variety of acyclic ureas comprising alkyl, arylalkyl, acyl, and aryl functional groups are investigated by nuclear magnetic resonance spectroscopy. In general, spectral characteristics of more than 130 substances based on acyclic ureas dissolved in deuterated dimethyl sulfoxide at room temperature are studied. The re-sults obtained based on the studies of 1H and 13C NMR spectra of urea and its N-alkyl-, N-arylalkyl-, N-aryl- and 1,3-diaryl derivatives are presented, and the effect of these functional groups on the chemical shifts in carbonyl and amide moieties in acyclic urea derivatives is discussed. An introduction of any type of substitu-ent (electron-withdrawing or electron-donating) into urea molecule is stated to result in a strong upfield shift in 13C NMR spectra relatively to unsubstituted urea. A strong sensitivity of NH protons to the presence of acyl and aryl groups in nuclear magnetic resonance spectra is pointed out. In some cases, qualitative depend-encies between the chemical shifts in the NMR spectra and the structure of the studied acyclic ureas are re-vealed. A summary of the results on chemical shifts in the NMR spectra of the investigated substances allows determining the ranges of chemical shift variations of the key protons and carbon atoms in acyclic ureas. The literature describing the synthesis procedures are provided. The results obtained significantly expand the methods of reliable identification of biologically active acyclic ureas and their metabolites that makes it promising to use NMR spectroscopy both in biochemistry and in clinical practice.


1975 ◽  
Vol 30 (9-10) ◽  
pp. 794-799 ◽  
Author(s):  
Ludger Ernst

The 13C NMR spectra of twelve amino-, dimethylamino-, diamino-, and bis(dimethylamino)naphthalenes are completely assigned by selective 13C{1H} double resonance and by interpretation of proton-coupled spectra. Strong substituent effects (Δδ) upon chemical shifts are observed and can largely be accounted for by mesomerism. The pronounced high-field shifts of C-6 in the 2-amino- and 2-dimethylaminonaphthalenes coincide with the enhanced reactivity of this position towards electrophilic reagents. In 1-dimethylaminonaphthalene and even more so in 1-dimethylamino-2-methylnaphthalene, conjugation is inhibited for steric reasons and Δδ’s are greatly diminished, thus giving an estimate for the contribution of resonance to substituent-induced shifts in the unhindered compounds. In two 1,8-disubstituted naphthalenes there are large deviations from additivity of substituent effects.


Sign in / Sign up

Export Citation Format

Share Document