methoxy group
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 42)

H-INDEX

31
(FIVE YEARS 3)

Photochem ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 69-76
Author(s):  
Hoai Pham ◽  
Madelyn Hunsley ◽  
Chou-Hsun Yang ◽  
Haobin Wang ◽  
Scott M. Reed

A fundamental goal of photochemistry is to understand how structural features of a chromophore can make specific bonds within a molecule prone to cleavage by light, or photolabile. The meta effect is an example of a regiochemical explanation for photolability, in which electron donating groups on an aromatic ring cause photolability selectively at the meta position. Here, we show, using a chromophore containing one ring with a meta-methoxy group and one ring with a para-methoxy group, that two stereoisomers of the same compounds can react with light differently, based simply on the three-dimensional positioning of a meta anisyl ring. The result is that the stereoisomers of the compound with the same configuration at both stereogenic centers are photolabile while the stereoisomers with opposite configuration do not react with light. Furthermore, time-dependent density functional theory (TD-DFT) calculations show distinct excitation pathways for each stereoisomer.


Author(s):  
Giribabu Lingamallu ◽  
Koteshwar Devulapally ◽  
Seelam Prasanthkumar ◽  
Surya Prakash Singh ◽  
Towhid Hossain Chowdhury ◽  
...  

We have engineered, synthesized, characterized a series of porphyrin sensitizers which contain either three or one methoxy group/s on phenyl ring of triphenyl imidazole donor moiety with either 3-(5-(benzo[c][1,2,5]thiadiazole-4-yl)thiophene-2-yl)-2-cyanoacrylic acid...


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lucas Lagerquist ◽  
Jani Rahkila ◽  
Patrik Eklund

Abstract A small library of 6-substituted syringyl model compounds with aliphatic, carboxylic, phenylic, benzylic alcohols and brominated substituents were prepared. The influence of the substituents on the chemical shifts of the compounds was analyzed. All of model compounds showed a characteristic increase in the 13C NMR chemical shift of the methoxy group vicinal to the substitution. This 13C NMR peak and its corresponding correlation peak in HSQC could potentially be used to identify 6-condensation in syringylic lignin samples.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hyejeong Lee ◽  
Jinhyung Seo ◽  
Mingyeong Jeong ◽  
Seo Yeong Na ◽  
Byoungchoo Park ◽  
...  

Six new heteroleptic ruthenium(II) complexes (JM1–JM6), each bearing a highly π-conjugated bipyridine ancillary ligand (a methoxy-substituted analog (L1) and a phenanthroline-type anchoring ligand (L2) (dcphen or dcvphen; [Ru(L)2(NCS)2][TBA]2; L1 = 4,4′-bis{2-(3,4-dimethoxyphenyl)ethenyl}-2,2′-bipyridine (dmpbpy), 4,4′-bis{2-(1,1′-biphenyl)-4-ylethenyl}-2,2′-bipyridine (bpbpy), or 4,4′-bis{2-(4′-methoxy-[1,1′-biphenyl]-4-ylethenyl}-2,2′-bipyridine (mbpbpy); L2 = 4,7-dicarboxy-1,10-phenanthroline (dcphen) or 4,7-bis(E-carboxyvinyl)-1,10-phenanthroline (dcvphen)) were synthesized, and their physical and photovoltaic properties were investigated. Various dye-sensitized solar cells (DSSCs) were fabricated using heteroleptic ruthenium(II) complexes. Ruthenium(II) complex JM1, ligated to dmpbpy (ancillary) and dcphen (anchoring) ligands, exhibited the maximum power conversion efficiency (PCE) value of 3.40%, which was approximately 71% of the efficiency exhibited by the commercially available N719-sensitized solar cells. Ruthenium(II) complex JM5, ligated to mbpbpy (ancillary) and dcphen (anchoring) ligands, exhibited the second-best PCE value (2.52%), and ruthenium(II) complex JM3, ligated to bpbpy (ancillary) and dcphen (anchoring) ligands, exhibited a PCE value of 1.45%. It was observed that the PCE values of the DSSCs could be significantly improved by introducing the electron-donating methoxy group at proper positions of the ancillary ligands present in the heteroleptic ruthenium(II) complexes (such as JM1 and JM5).


2021 ◽  
Vol 91 (11) ◽  
pp. 2176-2186
Author(s):  
G. S. Tsebrikova ◽  
Yu. I. Rogacheva ◽  
I. S. Ivanova ◽  
A. B. Ilyukhin ◽  
V. P. Soloviev ◽  
...  

Abstract 2-Hydroxy-5-methoxyphenylphosphonic acid (H3L1) and the complex [Cu(H2L1)2(H2O)2] were synthesized and characterized by IR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The polyhedron of the copper atom is an axially elongated square bipyramid with oxygen atoms of phenolic and of monodeprotonated phosphonic groups at the base and oxygen atoms of water molecules at the vertices. The protonation constants of the H3L1 acid and the stability constants of its Cu2+ complexes in water were determined by potentiometric titration. The protonation constants of the acid in water are significantly influenced by the intramolecular hydrogen bond and the methoxy group. The H3L1 acid forms complexes CuL‒ and CuL24‒ with Cu2+ in water.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6295
Author(s):  
Aleksandra Pawlak ◽  
Marta Henklewska ◽  
Beatriz Hernández-Suárez ◽  
Monika Siepka ◽  
Witold Gładkowski ◽  
...  

Background: The study investigated four flavanone-derived γ-oxa-ε-lactones: a parent unsubstituted compound and its three derivatives with the methoxy group in positions 2′, 4′ and 8. Our objective was to find out if the introduction of the methoxy group into the aromatic ring affects in vitro anti-tumor potency of the investigated lactones. Methods: Cytotoxic and pro-apoptotic effects were assessed with cytometric tests with propidium iodide, annexin V, and Western blot techniques. We also investigated potential synergistic potency of the tested lactones and glucocorticoids in canine lymphoma/leukemia cell lines. Results: The tested flavanone-derived lactones showed anti-cancer activity in vitro. Depending on its location, the methoxy group either increased or decreased cytotoxicity of the derivatives as compared with the parent compound. The most potent lactone was the one with the methoxy group at position 4′ of the B ring (compound 3), and the weakest activity was observed when the group was located at C-8 in the A ring. A combination of the lactones with glucocorticoids confirmed their synergy in anti-tumor activity in vitro. Conclusions: Methoxy-substituted flavanone-derived lactones effectively kill canine lymphoma/leukemia cells in vitro and, thanks to their synergistic action with glucocorticoids, may potentially be applied in the treatment of hematopoietic cancers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fowzia S. Alamro ◽  
Hoda A. Ahmed ◽  
Sobhi M. Gomha ◽  
Mohamed Shaban

New asymmetrical Schiff base series based on lateral methoxy group in a central core, (E)-3-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenyl 4-alkoxybenzoate (An), were synthesized and their optical and mesomorphic characteristics were investigated. The lateral OCH3group was inserted in the central ring in ortho position with respect to the azomethine linkage. FT-IR, and NMR spectroscopy as well as elemental analyses were used to elucidate their molecular structures. Their mesomorphic behaviors were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). These examinations indicated that all the designed series were monomorphic and possessed nematic (N) mesophase enantiotropically, except A12 derivative which exhibited monotropic N phase. A comparative study was made between the present investigated series (An) and their corresponding isomers (Bn). The results revealed that the kind and stability of the mesophase as well as its temperature range are affected by the location and special orientation of the lateral methoxy group electric-resistance, conductance, energy-gap, and Urbach-energy were also reported for the present investigated An series. These results revealed that all electrodes exhibit Ohmic properties and electric-resistances in the GΩ range, whereas the electric resistance was decreased from 221.04 to 44.83 GΩ by lengthening the terminal alkoxy-chain to n = 12. The band gap of the An series was reduced from 3.43 to 2.89 eV by increasing the terminal chain length from n = 6 to n = 12 carbons. Therefore, controlling the length of the terminal chain can be used to improve the An series’ electric conductivity and optical absorption, making it suitable for solar energy applications.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4884
Author(s):  
Yu-Ting Chou ◽  
Yen-Chun Koh ◽  
Kalyanam Nagabhushanam ◽  
Chi-Tang Ho ◽  
Min-Hsiung Pan

Feruloylacetone (FER) is a natural degradant of curcumin after heating, which structurally reserves some functional groups of curcumin. It is not as widely discussed as its original counterpart has been previously; and in this study, its anticancer efficacy is investigated. This study focuses on the suppressive effect of FER on colon cancer, as the efficacious effect of curcumin on this typical cancer type has been well evidenced. In addition, demethoxy-feruloylacetone (DFER) was applied to compare the effect that might be brought on by the structural differences of the methoxy group. It was revealed that both FER and DFER inhibited the proliferation of HCT116 cells, possibly via suppression of the phosphorylated mTOR/STAT3 pathway. Notably, FER could significantly repress both the STAT3 phosphorylation and protein levels. Furthermore, both samples showed capability of arresting HCT116 cells at the G2/M phase via the activation of p53/p21 and the upregulation of cyclin-B. In addition, ROS elevation and changes in mitochondrial membrane potential were revealed, as indicated by p-atm elevation. The apoptotic rate rose to 36.9 and 32.2% after being treated by FER and DFER, respectively. In summary, both compounds exhibited an anticancer effect, and FER showed a greater proapoptotic effect, possibly due to the presence of the methoxy group on the aromatic ring.


Sign in / Sign up

Export Citation Format

Share Document