scholarly journals Effects of Shenfu Qiangxin Drink on H2O2‑induced oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes and possible underlying mechanisms

2021 ◽  
Vol 21 (6) ◽  
Author(s):  
Sujie Zhang ◽  
Yiyan Zhang ◽  
Xindong Wang ◽  
Lixing Wu ◽  
Jianping Shen ◽  
...  
2007 ◽  
Vol 303 (1-2) ◽  
pp. 167-174 ◽  
Author(s):  
Xilin Long ◽  
Michael J. Goldenthal ◽  
José Marín-García

APOPTOSIS ◽  
2017 ◽  
Vol 22 (5) ◽  
pp. 639-646 ◽  
Author(s):  
Xue-Ru Liu ◽  
Lu Cao ◽  
Tao Li ◽  
Lin-Lin Chen ◽  
Yi-Yan Yu ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Guoliang Meng ◽  
Liping Xie ◽  
Yong Ji

Rationale: H 2 S is a gasotransmitter that regulates multiple cardiovascular functions. Krüppel-like transcription factor (KLF) exerts diverse functions in the cardiovascular system. Objectives: The aim of present study was to investigate the effect of hydrogen sulfide (H 2 S) on myocardial hypertrophy. Methods and results: Myocardial samples of 22 patients with left ventricle hypertrophy were collected and underwent histological and molecular biological analysis. Spontaneously hypertensive rats (SHR) and neonatal rat cardiomyocytes were studied for functional and signaling response to GYY4137, a H 2 S-releasing compound. Expression of cystathionine -lyase (CSE), a main enzyme for H 2 S generation in human heart, decreased in human hypertrophic myocardium, while KLF5 expression increased. In SHR treated with GYY4137 for 4 weeks, myocardial hypertrophy was inhibited as evidenced by improvement in cardiac structural parameters, heart mass index, size of cardiac myocytes and expression of atrial natriuretic peptide (ANP). Levels of oxidative stress and phosphorylation of mitogen-activated protein kinases were also decreased after H 2 S treatment. H 2 S diminished expression of the KLF5 in myocardium of SHR and in neonatal rat cardiomyocytes rendered hypertrophy by angiotensin II (Ang II). H 2 S also inhibited ANP promoter activity and ANP expression in Ang II-induced neonatal rat cardiomyocyte hypertrophy, and these effects were suppressed by KLF5 knockdown. KLF5 promoter activity was increased by Ang II stimulation, and this was reversed by H 2 S. H 2 S also decreased activity of specificity protein-1 (SP-1) binding to the KLF5 promoter and attenuated KLF5 nuclear translocation by Ang II stimulation. Conclusion: H 2 S attenuated myocardial hypertrophy, which might be related to inhibiting oxidative stress and decreasing ANP transcription activity in a KLF5-dependent manner.


Dose-Response ◽  
2018 ◽  
Vol 16 (3) ◽  
pp. 155932581878263 ◽  
Author(s):  
Lin Zhang ◽  
Yanmin Wang

Introduction: We aimed to test the mechanism of protective effects of tauroursodeoxycholic acid (TUDCA) on cardiovascular disease using cultured cardiomyocytes. Methods: Neonatal rat cardiomyocytes (NRCMs) were isolated and cultured and then the cells were divided into 4 groups based on the treatments: control group (cells treated with culture medium), H2O2/thapsigargin (TG) group (cells treated with oxidative stress and endoplasmic reticulum [ER] stress inducer), TUDCA group, and H2O2/TG + TUDCA group. The treated NRCMs were then subjected to serial analyses including flow cytometry, enzyme-linked immunosorbent assay, and Western blotting. Results: Tauroursodeoxycholic acid significantly attenuated H2O2-induced reactive oxygen species generation and lactate dehydrogenase release and restored H2O2-induced reductions of glutathione and superoxide dismutase levels in NRCMs. Tauroursodeoxycholic acid also alleviated H2O2-induced cardiomyocytes apoptosis, as well as the Bax/Bcl2 ratio compared with that of H2O2 treated alone. In addition, TUDCA suppressed TG-induced ER stress as reflected by inversing cell viability and the expression levels of glucose-regulated protein 78 kDa and C/enhancer-binding protein homologous protein. Conclusion: Our data indicated that TUDCA-mediated inhibition on H2O2-induced oxidative stress and cardiomyocytes apoptosis was through suppressing ER stress, and TUDCA possesses the potential to be developed as therapeutic tool in clinical use for cardiovascular diseases.


2005 ◽  
Vol 11 (9) ◽  
pp. S322
Author(s):  
Yasuhiro Maejima ◽  
Susumu Adachi ◽  
Hiroshi Ito ◽  
Mitsuaki Isobe

2014 ◽  
Vol 33 (2) ◽  
pp. 513-527 ◽  
Author(s):  
Tsung-I Chen ◽  
Yu-Cheng Hsu ◽  
Chih-Feng Lien ◽  
Jian-Hong Lin ◽  
Hung-Wen Chiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document