scholarly journals [Erratum] MicroRNA-101 inhibits autophagy to alleviate liver ischemia/reperfusion injury via regulating the mTOR signaling pathway

Author(s):  
Hu Song ◽  
Chenyang Du ◽  
Xingxing Wang ◽  
Jianjun Zhang ◽  
Zhongyang Shen
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xinjie Gao ◽  
Heng Yang ◽  
Jiabin Su ◽  
Weiping Xiao ◽  
Wei Ni ◽  
...  

Ischemic stroke is one of the major causes of disability; widely use of endovascular thrombectomy or intravenous thrombolysis leads to more attention on ischemia-reperfusion injury (I/R injury). Aescin, a natural compound isolated from the seed of the horse chestnut, has been demonstrated anti-inflammatory and antiedematous effects previously. This study was aimed at determining whether aescin could induce protective effects against ischemia-reperfusion injury and exploring the underlying mechanisms in vitro. Primary cultured neurons were subjected to 2 hours of oxygen-glucose deprivation (OGD) followed by 24 hours of simulated reperfusion. Aescin, which worked in a dose-dependent manner, could significantly attenuate neuronal death and reduce lactate dehydrogenase (LDH) release after OGD and simulated reperfusion. Aescin treatment at a concentration of 50 μg/ml provided protection with fewer side effects. Results showed that aescin upregulated the phosphorylation level of PRAS40 and proteins in the mTOR signaling pathway, including S6K and 4E-BP1. However, PRAS40 knockdown or rapamycin treatment was able to undermine and even abolish the protective effects of aescin; meanwhile, the levels of phosphorylation PRAS40 and proteins in the mTOR signaling pathway were obviously decreased. Hence, our study demonstrated that aescin provided neuronal protective effects against I/R injury through the PRAS40/mTOR signaling pathway in vitro. These results might contribute to the potential clinical application of aescin and provide a therapeutic target on subsequent cerebral I/R injury.


2018 ◽  
Vol 47 (5) ◽  
pp. 2067-2076 ◽  
Author(s):  
Wei Ren Chen ◽  
Hong Bin Liu ◽  
Yun Dai Chen ◽  
Yuan Sha ◽  
Qiang Ma ◽  
...  

Background/Aims: Melatonin has been demonstrated to protect cardiac microvascular endothelial cells (CMECs) against ischemia/reperfusion injury (IRI). Autophagy plays different roles in the heart during ischemia and reperfusion. The AMP activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway is associated with autophagy. This study sought to explore whether melatonin regulates CMEC autophagy through the AMPK/mTOR signaling pathway. Methods: The effects of melatonin in IRI were investigated in vivo rat models and in vitro neonatal CMECs. Myocardial infarct size was achieved by Evans blue and triphenyltetrazolium chloride staining. The severity of cell injury was evaluated by cell vitality and lactate dehydrogenase (LDH) release assays, and autophagy was evaluated by transmission electron microscopy and the assessment of autophagy-related gene expression, such as that of Beclin 1 and light chain 3-II. Results: In vivo, melatonin markedly reduced infarcted area, improved cardiac function and decreased LDH release. However, the AMPK activator AICAR and the mTOR inhibitor rapamycin reduced the protective effects of melatonin on IRI. In vitro, Beclin1 and light chain 3-II protein were found to be down-regulated and autophagosomes were found to be reduced in response to melatonin, together with an increase in cell vitality and a decrease in LDH. Treatment with AICAR or rapamycin ablated the benefit observed with melatonin treatment. Conclusions: Melatonin played an important and protective role in CMECs by inhibiting autophagy against IRI via the AMPK/mTOR system.


Sign in / Sign up

Export Citation Format

Share Document