scholarly journals On the determination of neutron multiplication by the Rossi-alpha method

2021 ◽  
Vol 7 (3) ◽  
pp. 253-257
Author(s):  
Vladimir A. Grabezhnoy ◽  
Viktor A. Dulin ◽  
Vitaliy V. Dulin ◽  
Gennady M. Mikhailov

Introduction. This work contains the results of determining the prompt neutron multiplication factor in the subcritical state of a one-core BFS facility, obtained by the neutron coincidence method, for which the influence of the error in the βeff in determining the multiplication factor turned out to be insignificant. The core of the facility consisted of rods filled with pellets of metallic depleted uranium, 37% enriched uranium dioxide and 95% enriched plutonium, sodium, stainless steel and Al2O3. Stainless steel served as a reflector. Methods. In contrast to the inverse kinetics equation solving (IKES) method, which is convenient for determining reactor subcritical states, the neutron coincidence method practically does not depend on the error in the value of the effective fraction of delayed neutrons βeff. If in the IKES method the reactivity value is obtained in fractions of βeff, i.e., from the measurement of delayed neutrons, the neutron coincidence method is based on the direct measurement of the value (1 – kσp)2, where is the effective multiplication factor by prompt neutrons. The total multiplication factor is defined as keff = kσp + βeff. If, for example, keff ≈ 0.9 (which is typical for determining the fuel burnup campaign), then it is the error in determining kσp that is the main one in comparison with the error in βeff. Thus, a 10% error in βeff of 0.003–0.004 (typical for plutonium breeders) will make a contribution to the error 1 – keff equal to 1 – kσp + βeff ≈ 0.00035, i.e., approximately 0.35%, but not 10%, as in the IKES method. Rossi-alpha measurements were carried out using two 3He counters and a time analyzer. The measurement channel width Δt was 1.0 μs. From these measurements, the value of the prompt neutron multiplication factor was obtained. In this case, the space-isotope correlation factor for the medium with a source was calculated using the following values: Φ(x) – solutions of the inhomogeneous equation for the neutron flux and Φ+(x) – solutions of the ajoint inhomogeneous equation. Results. The authors also present a comparison of the results of the Rossi-alpha experiment and measurements of the BFS-73 subcritical facility by the standard IKES method in determining the multiplication factor value. The data of the IKES method differ insignificantly from the results of the Rossi-alpha method over the entire range of changes in the subcriticality with an increase in the subcriticality of the BFS-73 one-core facility. Conclusion. It was impossible to apply the neutron coincidence method to fast reactors; however, the method turned out to be quite workable on their models created at the BFS facility, which was successfully demonstrated in this study.

Kerntechnik ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. 38-53
Author(s):  
M. J. Leotlela ◽  
I. Petr ◽  
A. Mathye

Author(s):  
Vladyslav Soloviov

In this paper accounting of spent nuclear fuel (SNF) burnup of RBMK-1000 with actinides and full isotopic composition has been performed. The following characteristics were analyzed: initial fuel enrichment, burnup fraction, axial burnup profile in the fuel assembly (FA) and fuel weight. As the results show, in the first 400 hours after stopping the reactor, there is an increase in the effective neutron multiplication factor (keff) due to beta decay of 239Np into 239Pu. Further, from 5 to 50 years, there is a decrease in keff due to beta decay of 241Pu into 241Am. Beyond 50 years there is a slight change in the criticality of the system. Accounting for nuclear fuel burnup in the justification of nuclear safety of SNF systems will provide an opportunity to increase the volume of loaded fuel and thus significantly reduce technology costs of handling of SNF.


Author(s):  
Vladyslav Soloviov

In this paper accounting of spent nuclear fuel (SNF) burnup of RBMK-1000 only with actinides has been performed. The following characteristics were analyzed: initial fuel enrichment, burnup fraction, axial burnup profile in the fuel assembly (FA) and fuel weight. As the results show, in the first 400 hours after stopping the reactor, there is an increase in the effective neutron multiplication factor (keff) due to beta decay of 239Np into 239Pu. Further, from 5 to 50 years, there is a decrease in keff due to beta decay of 241Pu into 241Am. Beyond 50 years there is a slight change in the criticality of the system. Accounting for nuclear fuel burnup in the justification of nuclear safety of SNF systems will provide an opportunity to increase the volume of loaded fuel and thus significantly reduce technology costs of handling of SNF.


2014 ◽  
Vol 29 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Atta Muhammad ◽  
Masood Iqbal ◽  
Tayyab Mahmood

In this study kinetic parameters, effective delayed neutron fraction and prompt neutron generation time have been investigated at different burn-up stages for research reactor's equilibrium core utilizing low enriched uranium high density fuel (U3Si2-Al fuel with 4.8 g/cm3 of uranium). Results have been compared with reference operating core of Pakistan research Reactor-1. It was observed that by increasing fuel burn-up, effective delayed neutron fraction is decreased while prompt neutron generation time is increased. However, over all ratio beff/L is decreased with increasing burn-up. Prompt neutron generation time L in the understudy core is lower than reference operating core of reactor at all burn-up steps due to hard spectrum. It is observed that beff is larger in the understudy core than reference operating core of due to smaller size. Calculations were performed with the help of computer codes WIMSD/4 and CITATION.


Sign in / Sign up

Export Citation Format

Share Document