water ingress
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 64)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Yask Kulshreshtha ◽  
Philip J. Vardon ◽  
Yi Du ◽  
Guillaume Habert ◽  
Aurélie Vissac ◽  
...  

Earthen construction is re-gaining popularity as an ecological and economical alternative to contemporary building materials. While building with earth offers several benefits, its performance due to water ingress is a concern for its widespread application. This limitation is often solved by adding chemical stabilisers such as Portland cement and hydraulic lime. Chemical stabilisers are a subject of widespread debate as they increase the cost and embodied energy of the structure, and reduce the desirable characteristics of raw or unstabilised earth. This along with perceived environmental performance, renewability, and proven effectiveness in traditional earthen construction has led to a growing interest in biological or organic stabilisers. Although the strengthening mechanism of biological stabilisers is widely covered in scientific studies, discussion regarding the water-resistance is limited. This review aggregates the research from the field of earthen construction and geotechnical engineering and extends it to explain the possible mechanism responsible for the water-resistance behaviour of biologically stabilised earthen materials. This study includes a wide range of traditional and industrial biological stabilisers derived from animals (cow-dung, casein, chitosan), plants (starch, guar gum, cactus mucilage, lignin, tannin) seaweeds (alginate, agar, carrageen) and microbes (xanthan gum, gellan gum). A conceptual model of water-ingress in unstabilised earthen blocks is proposed and the response of biological stabiliser to water ingress and related physico-chemical and physical factors is discussed using the model at microscale (stabiliser interaction with clay, sand) and macroscale (hydraulic conductivity of block). Properties of stabilisers such as hydrophobicity, stability under wet conditions or interaction with cations have a dominant effect on the overall response to water ingress. Key gaps have been identified in the existing knowledge that are necessary to investigate in order to understand the water-resistance behaviour comprehensively. The study concludes with a brief assessment of biological stabilisers based on their performance and feasibility to use in contemporary earthen construction.


Author(s):  
Wolfgang Seibel

AbstractAfter heavy snowfall, the skating rink of the city of Bad Reichenhall collapsed on 2 January 2006. Fifteen people, twelve children between the age of 7 and 15 and three mothers, were killed by the falling debris of the roof, 34 people were injured. Court trials came to the conclusion that the City of Bad Reichenhall, over a long period of time, had seriously neglected the maintenance of the hall despite clear indication of water ingress and related weak points in the roof structure. The Lord Mayor admitted before court to have purposefully obstructed the decision of the municipal parliament to renovate the hall since he had intended to have the hall dismantled anyway and to build a modern pastime and wellness center instead.


2022 ◽  
Vol 354 ◽  
pp. 00048
Author(s):  
Niculina Vătavu ◽  
Mihaela Părăian ◽  
Sorin Vătavu ◽  
Mihai Popa

The explosion danger in all industries where explosive atmospheres generated by the mixture of combustible dusts or flammable gases with air may form, must be treated as a major hazard, as the explosions that may occur can seriously affect both health and safety people, as well as the environment. It is therefore necessary to assess the explosion risk and to establish appropriate measures to reduce it to acceptable levels in accordance with the requirements of the European Directives. An essential element in the assessment of the explosion risk for electrical and non-electrical equipment intended for use in potentially explosive atmospheres is the way in which an appropriate normal degree of protection is provided through the equipment housing (protection against touching of dangerous parts inside the equipment housing and protection against the ingress of dust and water inside it). The aim of the paper is to highlight compliance with the requirements of the ATEX Directive, given that this protection is a basic requirement for explosion protection and to present the important elements to be considered for the assessment of the normal degree of protection and the development of harmonized test methods with the requirements of European standards.


Author(s):  
Annemarie G. Muntendam-Bos ◽  
Gerco Hoedeman ◽  
Katerina Polychronopoulou ◽  
Deyan Draganov ◽  
Cornelis Weemstra ◽  
...  

Abstract We present an overview of induced seismicity due to subsurface engineering in the Netherlands. Our overview includes events induced by gas extraction, underground gas storage, geothermal heat extraction, salt solution mining and post-mining water ingress. Compared to natural seismicity, induced events are usually small (magnitudes ≤ 4.0). However, due to the soft topsoils in combination with shallow hypocentres, in the Netherlands events exceeding magnitude 1.5–2.0 may be felt by the public. These events can potentially damage houses and infrastructure, and undermine public acceptance. Felt events were induced by gas production in the north of the Netherlands and by post-mining water ingress in the south-east. Notorious examples are the earthquakes induced by gas production from the large Groningen gas field with magnitudes up to 3.6. Here, extensive non-structural damage incurred and public support was revoked. As a consequence, production will be terminated in 2022 leaving approximately 800 billion cubic metres of gas unexploited. The magnitudes of the events observed at underground gas storage, geothermal heat production and salt solution mining projects have so far been very limited (magnitudes ≤ 1.7). However, in the future larger events cannot be excluded. Project- or industry-specific risk governance protocols, extensive gathering of subsurface data and adequate seismic monitoring are therefore essential to allow sustainable use of the Dutch subsurface now and over the decades to come.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 36
Author(s):  
Natalia Mariel Alderete ◽  
Arn Mignon ◽  
Katrin Schollbach ◽  
Yury Villagrán-Zaccardi

The traditional approach for evaluating capillary imbibition, which describes the phenomena as a linear relationship between mass gain and the square root of time, considers a rigid pore structure. The common deviation from the linearity when using the square-root law (manifested in a downward curvature, i.e., slower water ingress) can be explained by considering a changing pore structure during the process caused by the swelling of calcium silicate hydrate (C-S-H) during water ingress. Analysing how the combination of deforming phase (C-S-H), non-deforming phase, and porosity affects the capillary water ingress rate is relevant for a deeper understanding of concrete durability. In this research, the C-S-H content was quantified by means of XRD diffraction coupled with Rietveld + PONKCS, dynamic water sorption (DVS), and SEM/BSE images coupled with phase mapping using PhAse Recognition and Characterization (PARC) software. The porosity was assessed by mercury intrusion porosimetry, water absorption under vacuum, and DVS. Furthermore, to assess deformations occurring with water and a non-aqueous imbibant, capillary imbibition tests with water and isopropanol as invading liquids were performed along with simultaneous deformation measurements. The relation between the relative C-S-H content and porosity has a great impact on the transport process. Samples exposed to isopropanol presented a much larger liquid uptake but significantly fewer deformations in comparison to imbibition with water. The effects of the changing pore structure were also evaluated with the Thomas and Jennings model, from which calculations indicated that pore shrink during imbibition. A comprehensive description of the relation between deformations and capillary imbibition in cement pastes reveals that liquid ingress is highly influenced by deformations.


2021 ◽  
Author(s):  
Yuxiang Wang ◽  
Alper Kiziltas ◽  
Andrew R. Drews ◽  
Sandeep Tamrakar ◽  
Patrick Blanchard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document