Volume 6: Beyond Design Basis Events; Student Paper Competition
Latest Publications


TOTAL DOCUMENTS

90
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791855836

Author(s):  
Nurjuanis Z. Zainuddin ◽  
Benjamin A. Lindley ◽  
Geoffrey T. Parks

Plutonium is a significant proliferation concern as well as a major contributor to the long-term toxicity of nuclear waste. Partial incineration in PWRs with uranium-MOX fuel is often considered to mitigate these concerns. Thorium-MOX is an alternative fuel with superior material properties and higher plutonium destruction rates, as shown in multiple feasibility studies. However, the core performance and operational characteristics (e.g. discharge burn-up, feasibility of controlling the core) are ultimately dependent on the core loading pattern (LP) and burnable poison (BP) design. In this paper, the LP for Th-Pu fuel of various compositions is optimized for (1) discharge burn-up, (2) radial form factor (RFF), (3) cycle length, (4) moderator temperature coefficient (MTC), and (5) reactivity swing over cycle. Maximizing the cycle length makes the discharge burn-up and reactivity swing worse due to placement of once- and twice-burnt fuel near the core periphery. It also makes the MTC less negative. The harder neutron spectrum of Th-Pu fuel compared to conventional U fuel favours the use of distributed integral burnable poisons to control the reactivity swing over the cycle. This leads to a significant amount of dissimilarity between LPs with relatively similar performance measures, and between optimal LPs for different Pu loadings in the fuel. The RFF can vary throughout the cycle but a careful placement of the assemblies can mitigate this. The cycle reactivity swing is controlled using enriched soluble boron, which makes the MTC worse, and this constrains feasibility for high Pu loading in the fuel.


Author(s):  
Hector E. Medina ◽  
Brian Hinderliter

Due to the aging of structures, the issues of plant life management and license extension are receiving increasing emphasis in many countries. Understanding failure of structures due to random roughness on surfaces at early stages of degradation is therefore crucial. It has been shown that even slightly sinusoidal roughness can increase stress concentration by a factor of 2 or 3, which can be critical for a brittle component due to the significant reduction of its load-carrying capacity, even with slight roughness. A more in-depth fracture analysis of surfaces possessing random roughness is needed in order to more profoundly understand, and hence develop models that will predict more accurately, failure of structural materials exposed to degrading, in-service conditions. Using a technique previously developed and successfully applied, replicates of random rough surfaces, imprinted with various levels of degradation, and at three distinct auto correlation lengths, were realized and mechanical testing was performed on them. The stress, strain and energy at fracture are reported. Finite element analysis was carried out to elucidate experimental results. Besides the expected reduction of energy at fracture with degradation, a relaxation region was observed where the energy slightly increases. This phenomenon implies that even after degradation has progressed there is a local maximum of energy at fracture due to the competing effect of tendons and growth of pits. The results find applications on the early stage of maintenance of surfaces of structures in service.


Author(s):  
Sahil Gupta ◽  
Eugene Saltanov ◽  
Igor Pioro

Canada among many other countries is in pursuit of developing next generation (Generation IV) nuclear-reactor concepts. One of the main objectives of Generation-IV concepts is to achieve high thermal efficiencies (45–50%). It has been proposed to make use of SuperCritical Fluids (SCFs) as the heat-transfer medium in such Gen IV reactor design concepts such as SuperCritical Water-cooled Reactor (SCWR). An important aspect towards development of SCF applications in novel Gen IV Nuclear Power Plant (NPP) designs is to understand the thermodynamic behavior and prediction of Heat Transfer Coefficients (HTCs) at supercritical (SC) conditions. To calculate forced convection HTCs for simple geometries, a number of empirical 1-D correlations have been proposed using dimensional analysis. These 1-D HTC correlations are developed by applying data-fitting techniques to a model equation with dimensionless terms and can be used for rudimentary calculations. Using similar statistical techniques three correlations were proposed by Gupta et al. [1] for Heat Transfer (HT) in SCCO2. These SCCO2 correlations were developed at the University of Ontario Institute of Technology (Canada) by using a large set of experimental SCCO2 data (∼4,000 data-points) obtained at the Chalk River Laboratories (CRL) AECL. These correlations predict HTC values with an accuracy of ±30% and wall temperatures with an accuracy of ±20% for the analyzed dataset. Since these correlations were developed using data from a single source - CRL (AECL), they can be limited in their range of applicability. To investigate the tangible applicability of these SCCO2 correlations it was imperative to perform a thorough error analysis by checking their results against a set of independent SCCO2 tube data. In this paper SCCO2 data are compiled from various sources and within various experimental flow conditions. HTC and wall-temperature values for these data points are calculated using updated correlations presented in [1] and compared to the experimental values. Error analysis is then shown for these datasets to obtain a sense of the applicability of these updated SCCO2 correlations.


Author(s):  
Yabing Li ◽  
Lili Tong ◽  
Xuewu Cao

In order to satisfy the higher safety requirements after the Fukushima Accident, in-vessel retention (IVR) strategy is suggested to be a measure for the improvement for the operating 2nd generation Pressurized Water Reactor (PWR). In this paper, a design of passive cavity flooding system isproposed for the 2nd generation modified PWR with reference to the design of in-containment refueling water storage tank (IRWST)for AP1000, and the IVR assessmentis evaluated with the risk oriented accident analysis methodology (ROAAM). Seven representational accident sequences are selected for the IVR assessment and analyzed by lumped-parameter safety analysis computer code. Accident analysis focuses on four key parameters forthe assessment, that is, decay power, zirconium oxidation fraction, and both the mass of oxidic pool and metal layer. The values of them are obtained through analysis and used for the assessment. The probability density distributions of those parameters are determined by combining the analysis results and engineering judgment. The success probability of IVR from the viewpoint of thermal failure is predicted using a program written by the Matlab code. Furthermore, some sensitivity analysis and parametric studies are investigated to support the assessment. The assessment result shows that the success probability of the cavity injection system is higher than 99%. Detail analysis about system reliability and feasibility is needed for further work.


Author(s):  
Jeffrey Samuel ◽  
Glenn Harvel ◽  
Igor Pioro

The feasibility of operating with natural circulation as the normal mode of core cooling has been successfully demonstrated for a few small sized nuclear reactors. Natural circulation is being considered for cooling the core of a nuclear reactor under normal operating conditions in several advanced reactor concepts being developed today. Although studies have been conducted in natural circulation for many decades, using natural circulation as the primary cooling mechanism for nuclear reactors or as a passive safety system requires a comprehensive understanding of local and integral system phenomena, validated benchmark data, accurate predictive tools, and reliability analysis methods. As full-scale experiments of supercritical water are expensive, scaling laws can be applied to develop test matrices using modelling fluids to reproduce similar conditions in a scaled-down experimental thermalhydraulic loop. The main aim of this work is to understand the natural circulation phenomena by analyzing water and modelling fluids such as Carbon dioxide (CO2) and Freon 134a (R-134a). The use of the modelling fluids at subcritical, pseudocritical and supercritical pressures is discussed along with fluid-to-fluid scaling techniques. The results from a one-dimensional numerical model developed using MATLAB to calculate the steady-state mass flow rate and heat transport characteristics of an experimental natural circulation test loop are presented and analyzed.


Author(s):  
Anastasiia Zvorykina ◽  
Georgij Sharayevskiy ◽  
Nataliya Fialko ◽  
Nina Sharayevskaya

The present-day stage of nuclear-power engineering development raises sharply a number of complicated questions regarding the guarantee of safety operation of nuclear power-generating units of operating and designed Nuclear Power Plant (NPP). The most important of these unsolved technological problems were considered in [1] on the base of analysis of ways of operation reliability improvement for Nuclear Power Installations (NPI) with WWER and RBMK reactors. In connection with the priorities formulated in [1], in papers [2–6] the main aspects of approaches available for solution of most complex problem are considered: the development of methods of early identification of initial phases of emergency operation regimes in such nuclear power-generating units which are critically important for NPI trouble-free operation. It is necessary to stress, that reliable identification of the anomalies mentioned, especially of thermal-hydraulic nature ones in core region of nuclear reactor, must be provided under conditions when such operating troubles can not yet be detected by the issued supervisory instruments of NPI. Taking into account the requirement to prospective diagnostic provision of NPP equipment, in papers [2–5] are underlined that at present time the development of effective methods of anomalies identification in NPI equipment and development of mathematical software support on base of these methods for computer-aided diagnostic systems on base of AI conceptions in structure of hardware of operator support tools of new generation NPP are considered as the main condition which determine the development of diagnostic means with mentioned functional possibilities.


Author(s):  
Takayuki Suzuki ◽  
Hiroyuki Yoshida ◽  
Fumihisa Nagase ◽  
Yutaka Abe ◽  
Akiko Kaneko

In order to improve the safety of Boiling Water Reactor (BWR), it is required to know the behavior of the plant when an accident occurred as can be seen at Fukushima Daiichi nuclear power plant accident. Especially, it is important to estimate the behavior of molten core jet in the lower part of the containment vessel at severe accident. In the BWR lower plenum, the flow characteristics of molten core jet are affected by many complicated structures, such as control rod guide tubes, instrument guide tubes and core support plate. However, it is difficult to evaluate these effects on molten core jet experimentally. Therefore, we considered that multi-phase computational fluid dynamics approach is the best way to estimate the effects on molten core jet by complicated structure. The objective of this study is to develop the evaluation method for the flow characteristic of molten core jet including the effects of the complicated structures in the lower plenum. So we are developing a simulation method to estimate the behavior of molten core jet falling down through the core support plate to the lower plenum of the BWR. The method has been developed based on interface tracking method code TPFIT (Two Phase Flow simulation code with Interface Tracking). To verify and validate the applicability of the developed method in detail, it is necessary to obtain the experimental data that can be compared with detailed numerical results by the TPFIT. Thus, in this study, we are carrying out experimental works by use of multi-phase flow visualization technique. In the experiments, time series of interface shapes are observed by high speed camera and velocity profiles in/out of the jet will be measured by the PIV method. In this paper, the outline of the developing method based on the TPFIT was explained. And, the developing method was applied to preliminary experiment with/without modeled complicated structures. As the results, predicted interface shapes were almost agreed with measured data. However, predicted falling down velocity of the jet was lower than measured data. We considered causes of this underestimation and improved the method and simulation conditions to resolve this problem.


Author(s):  
S. Kudriakov ◽  
E. Studer ◽  
M. Kuznetsov ◽  
J. Grune

A set of experiments performed at Karlsruhe Institute of Technology (KIT) in the framework of the LACOMECO European project is devoted to flame propagation in an obstructed large scale facility A3 (of 8 m height and 33 m3 volume) with initially vertical hydrogen concentration gradients. Almost linear positive and negative (relative to gravity) concentration gradients are created prior to ignition in the range from 4% to 13%, and the process of flame acceleration is investigated depending on hydrogen concentration gradient and ignition positions. In this paper we describe the A3 facility and analyse the experimental data obtained during the project. The results of numerical simulation performed using Europlexus code are presented together with the critical discussions and conclusions.


Author(s):  
Hiroshi Ono ◽  
Hideo Konishi

The operation of the Isolation Condenser (IC) played an important role in the progression of the accident at the unit 1 of Fukushima Daiichi nuclear power station. Analyses of Unit 1 accident in the early stage (prior to the occurrence of core melt) were performed using plant dynamics analysis code RELAP5/MOD31 and the results were compared with measured data. In the RELAP5 code, analysis scope of target is not a severe accident. But, the detailed simulation in the early stage of accident including the plant control system behavior is possible. Moreover, some sensitivity analyses were conducted and the reactor behavior under IC operations was examined.


Author(s):  
Rosa Lo Frano ◽  
Giuseppe Forasassi

The aim of this study is to evaluate the influence of the damaging or failure effects induced by seismic loadings on the loading bearing capability of the overall nuclear structures, systems and components (SSCs). In particular it was analyzed the behaviour of the SSCs in terms of their required safety functions and capacity assuming the occurrence of an earthquake having magnitude beyond the design basis value (in agreement with the “stress tests” suggestions, presently foreseen by the European and International Associations). To the purpose, quite refined FEM models were set up and implemented considering suitable materials behaviour and constitutive laws for the reactor materials, particularly for the concrete material behaviour (which could suffer failure and damage mechanisms during the ground shaking). Several type of damaging mechanics were considered. The obtained results seemed to confirm the overall containment reliability even if with minor upgrading actions in operating procedures and design characteristics. Moreover they allowed to appropriately check the NPP containment strength reserve.


Sign in / Sign up

Export Citation Format

Share Document