Contact deformation and pre-control of transmission properties of point conjugate gear

2000 ◽  
Vol 13 (01) ◽  
pp. 76 ◽  
Author(s):  
Huran Liu
1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


1995 ◽  
Vol 23 (1) ◽  
pp. 26-51 ◽  
Author(s):  
S. Kagami ◽  
T. Akasaka ◽  
H. Shiobara ◽  
A. Hasegawa

Abstract The contact deformation of a radial tire with a camber angle, has been an important problem closely related to the cornering characteristics of radial tires. The analysis of this problem has been considered to be so difficult mathematically in describing the asymmetric deformation of a radial tire contacting with the roadway, that few papers have been published. In this paper, we present an analytical approach to this problem by using a spring bedded ring model consisting of sidewall spring systems in the radial, the lateral, and the circumferential directions and a spring bed of the tread rubber, together with a ring strip of the composite belt. Analytical solutions for each belt deformation in the contact and the contact-free regions are connected by appropriate boundary conditions at both ends. Galerkin's method is used for solving the additional deflection function defined in the contact region. This function plays an important role in determining the contact pressure distribution. Numerical calculations and experiments are conducted for a radial tire of 175SR14. Good agreement between the predicted and the measured results was obtained for two dimensional contact pressure distribution and the camber thrust characterized by the camber angle.


1972 ◽  
Vol 36 (5) ◽  
pp. 709-714
Author(s):  
J. P. Palta ◽  
G. R. Blake ◽  
D. A. Farrell

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Pauline Boucher ◽  
Arthur Goetschy ◽  
Giacomo Sorelli ◽  
Mattia Walschaers ◽  
Nicolas Treps

Sign in / Sign up

Export Citation Format

Share Document