NUMERICAL ANALYSIS OF THE TEMPERATURE DISTRIBUTION OF THE ROTOR SYSTEM IN THE CENTRIFUGE MADE OF TWO-LAYER MATERIALS

2000 ◽  
Vol 36 (06) ◽  
pp. 110
Author(s):  
Xinwei Song
2013 ◽  
Vol 46 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Sooseok Choi ◽  
TianMing Li ◽  
Takayuki Watanabe ◽  
Takashi Nakayama ◽  
Koji Otsuki

2018 ◽  
Vol 19 (5) ◽  
pp. 503
Author(s):  
Amar Zerrout ◽  
Ali Khelil ◽  
Larbi Loukarfi

This study is an experimental and numerical analysis of the influence from changes in the conditions of inputs temperature and velocity on the behavior thermal and dynamic of a multi-jet swirling system impacting a flat plate. The experimental device comprising three diffusers arranged in line, of diameter D aloof 2D between the axes of their centers, impinging the plate perpendicularly at an impact height H = 6D. The swirl is obtained by a generator (swirl) of composed 12 fins arranged at 60° relative to the vertical placed just at the exit of the diffuser. By imposing the temperature and velocity for three input conditions with three studied configurations. The paper deals with find the configuration that optimizes the best thermal homogenization. The results show that the configuration having an equilibrated inlet temperature (T, T, T) is derived from a good temperature distribution on the baffle wall and a better thermal transfer from the plate. The system was numerically simulated by the fluent code by using the turbulence model (k–ε). This last has yielded results accorded to those experimental results.


Author(s):  
Sandeep Patil ◽  
Siddarth Chintamani ◽  
Rajeev Kumar ◽  
Ratan Kumar ◽  
Brian H. Dennis

Critical safety studies of a nuclear power plants are often associated with inadequate and improper cooling of the reactor core or the spent fuel rods. Coolant flow over the hot nuclear fuel rods often gets stalled during major accidents resulting in high temperature levels. These elevated temperature levels can potentially melt the fuel rod material and cause the release of radioactive gases. Research activities, both numerical and experimental in nature to explore these rare but potentially catastrophic possibilities have resulted in sophisticated numerical codes capable of simulating the various post-accident scenarios. These codes, although reasonably accurate and reliable have steep learning curves and are not often very user-friendly. A fast and accurate prediction of the critical temperature conditions using popular commercially available software packages is the subject of current study. Results from this parametric study of temperature distribution over a partially cooled fuel rod carried out using ANSYS as the numerical analysis tool is reported. Nuclear fuel rods being inadequately cooled inside a stagnant pool of coolant water in an accident scenario resulting in disrupted coolant flow has been simulated. This situation can arise within the reactor (design-basis accidents) or in the waste-fuel storage (as faced in Fukushima). In these situations, the fuel rod is often left partially immersed in the coolant water resulting in immersed portion of the rod cooled by water and the exposed portion cooled by air leading to non-uniform and improper cooling of the system. Realistic dimensions and materials as in commercial nuclear fuel rod have been used in the study. Taking advantage of the symmetry, an axisymmetric radial plane sliced longitudinally has been analyzed. Variations in the tangential direction have been neglected. The heat transfer problem uses homogeneous convective boundary conditions and assumes temperature dependent thermal conductivity. The parameters varied are the coolant level and the heat generation rate inside the fuel rod. A macro to automatically capture the transients in the temperatures was written in ANSYS (a finite element package). The governing energy equations were implicitly solved using finite volume scheme in MATLAB. ANSYS results are in close agreement with those obtained using MATLAB. The centerline temperature of the fuel rod shows a sharp rise below a certain coolant level.


2006 ◽  
Vol 32 (4) ◽  
pp. 236-243 ◽  
Author(s):  
Yoshihiro ISSHIKI ◽  
Hiroshi YAMAGUCHI ◽  
Gosaku KAWAI ◽  
Hiizu OCHI ◽  
Koichi OGAWA

Sign in / Sign up

Export Citation Format

Share Document