THREE-DIMENSIONAL NUMERICAL SIMULATION AND ANALYSIS OF CAVITATING TWO-PHASE FLOW IN A VERTICAL MULTI-HOLE NOZZLE

2005 ◽  
Vol 41 (03) ◽  
pp. 92 ◽  
Author(s):  
Zhixia He
2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


Author(s):  
Xiaoxin Wang ◽  
Hongli Hu ◽  
Lin Li ◽  
Bo Wang

This paper proposed three-dimensional numerical simulation method by coupling of electrostatic and fluid fields to evaluating the performance of electrical sensor in the concentration measurement of gas/solid two-phase flow. Compared with the static numerical simulation, this real-time dynamic 3-D simulation method can research on a designed capacitance sensor combining the dynamic characteristics of the two-phase flows for concentration measurement. Several fluid-electrostatic models of transmission pipes with different sensor structures are built. Under different test positions and different particle concentrations, the flow characteristics and the corresponding electric signals can be obtained, and the correlation coefficient between the concentration values and the capacitance values are used for performance evaluation of the sensors. The effects of flow regimes on concentration measurement are also been investigated in this paper. To validate the results of simulation, an experimental platform with horizontal straight pipe for phase volume concentration measurement of solid/air two-phase flow is built, and the experimental results agree well with simulation conclusions. The simulation and test results show that the coupling models can give constructive reference opinions for the sensor design and collection of installation position in different transmission pipelines, which are very important for the practical process of pneumatic conveying system.


Sign in / Sign up

Export Citation Format

Share Document