dimensional coupling
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Yipeng Xie ◽  
Junsheng Yang ◽  
Cong Zhang ◽  
Jinyang Fu

The Yujingshan high-speed railway tunnel crosses a giant cavern system with a 108 × 104 m3 volume chamber and an 18 km long underground river. The massive project, which lasted three years, was eventually awarded the “Overcoming the Challenges” award by the International Tunneling and Underground Space Association (ITA) in 2020. However, since the cave chamber was filled with large-scale rockfill, structural settlement is a non-negligible problem. This paper presents the unique structures of a bridge supporting railway tracks wrapped by tunnel lining and the settlement control of the Yujingshan tunnel crossing massive rockfill in the giant cave. The geological characteristics and design considerations are systematically introduced. A three-dimensional coupling discrete element method (DEM) and finite difference method (FDM) numerical model and 13 months of long-term settlement monitoring were conducted to evaluate the settlement behavior. The results indicate that the morphology of cavern and internal deposits caused the whole rockfill to migrate to the lower left. The tunnel structure consequently developed a significant inclined settlement. The continuous construction load would increase the settlement value by 31.4%. The bottom reinforcement of steel-pipe pile with grouting could effectively inhibit settlement and differential settlement. Considering the simulation results, the tunnel bottom had greater settlement than the limit standard for high-speed railway embankment, which means this special structure form is reasonable for operation. Meanwhile, the monitoring results show that the tunnel bottom settlement in D3K279+891~D3K279+947 had not performed an apparent convergence trend after 13 months. Further structural monitoring and compensation grouting should be actively considered for operation maintenance.


2021 ◽  
Vol 11 (21) ◽  
pp. 10228
Author(s):  
Ran You ◽  
Jiuling Liu ◽  
Minghua Liu ◽  
Yuxiang Zhang ◽  
Zhiyuan Chen ◽  
...  

In the detection of small size mass loading, such as a single cell, a micro droplet or an aerosol particle, the sensors with longitudinally coupled surface acoustic wave resonator (LC-SAWR) structure can hardly avoid waveform distortions. The relative size of mass loading to the sensitive surface of the detector is the main factor affecting the response of LC-SAWR. The smaller the relative size, the worse the waveform distortion. In order to avoid influences from the mass loading’s size, in this paper, a transversely coupled SAW resonator (TC-SAWR) was proposed in order to achieve high performance in sensing small size mass loadings. For the design and simulation of TC-SAWR, the two-dimensional coupling of model (2D-COM) theory and finite element method (FEM) were used in this work. In the experiment, SiO2 was deposited on the sensor’s surface as a small size mass loading. The results from simulation and experiment mutually demonstrated the advantage of TC-SAWR to conquer waveform distortion in the detection of small size mass loading.


2021 ◽  
Vol 104 (14) ◽  
Author(s):  
S. Chillal ◽  
A. T. M. N. Islam ◽  
P. Steffens ◽  
R. Bewley ◽  
B. Lake

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7260
Author(s):  
Ran You ◽  
Jiuling Liu ◽  
Minghua Liu ◽  
Zhiyuan Chen ◽  
Shitang He

In order to accurately investigate the disturbance of complex distributed mass loading on surface acoustic wave (SAW) propagation characteristics, two-dimensional coupling-of-modes (2-D COM) theory and finite element method (FEM) were used to simulate the responses of SAW sensors. By using the PDE mode of FEM software, four SAW resonators with the loads in different distribution patterns were modeled. Also, we fabricated and measured a series of SAW resonators accordingly. The results showed that the 2-D COM theory combined with the finite element method was able to simulate the transverse modes of the device and the disturbance of the mass loading on the transverse mode effectively, making the simulation more accurate.


Sign in / Sign up

Export Citation Format

Share Document