Simulation and Experiment Study on the Microstructure Evolution During the Whole Hot Ring Rolling Process

2014 ◽  
Vol 50 (16) ◽  
pp. 97
Author(s):  
Tian ZOU
2020 ◽  
Vol 50 ◽  
pp. 134-138
Author(s):  
Deng Jiadong ◽  
Liu Jikang ◽  
Cheng Zhe ◽  
Qian Dongsheng ◽  
Mao Huajie ◽  
...  

2013 ◽  
Vol 762 ◽  
pp. 354-359 ◽  
Author(s):  
Thomas Henke ◽  
Gerhard Hirt ◽  
Markus Bambach

Ring rolling is an incremental bulk forming process. Hence, the process consists of a large number of alternating deformations and dwell steps. For accurate calculations of material flow and thus ring geometry and rolling forces in hot ring rolling processes, it seems necessary to consider material softening due to static and post dynamic recrystallization which could occur between two deformation steps. In addition, due to the large number of cycles, the modeling results, especially the prediction of grain size, can easily be affected by uncertainties in the input data. However, for small rings and ring material with slow recrystallization kinetics, the interpass times can be short compared to the softening kinetics and the effect of softening can be so small, that microstructure evolution and the description of the materials flow behavior can be de-coupled. In this paper, a semi-empirical JMAK-based model for a stainless steel (1.4301/ X5CrNi18-9/ AISI304) is presented and evaluated by the use of experiments and other investigations published in [1],[2]. Finite Element (FE) simulations of a ring rolling process with a high number of ring revolutions and thus multiple, incremental forming steps were conducted based on ring rolling experiments. The FE simulation results were validated with the experimentally derived rolling force and evolution of ring diameter. The microstructure evolution was calculated in a post processing step considering the investigated evolution of strain and temperature. In this calculation the interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been considered. Both, the calculated final microstructure and the evolution of rolling force and ring geometry calculated stand in good agreement with the experimental investigations.


2010 ◽  
Vol 638-642 ◽  
pp. 223-228 ◽  
Author(s):  
Jong Taek Yeom ◽  
Jeoung Han Kim ◽  
Jae Keun Hong ◽  
Nho Kwang Park ◽  
Chong Soo Lee

Microstructure evolution during ring rolling process of a large-scale Ti-6Al-4V ring was investigated with the combined approaches of three dimensional finite element method (FEM) simulation and microstructure prediction model. A microstructure prediction model was established by considering the volume fractions and grain size of  and  phases varying with process variables, and grain growth. In order to perform FE simulation for ring rolling process of Ti-6Al-4V alloy, a constitutive equation was generated by utilizing the flow stress data obtained from hot compression tests at different temperature and strain rate conditions. The volume fraction and grain size of  and  phases during ring rolling were calculated by de-coupled approach between FEM analysis and microstructure prediction model. The prediction results were compared with the experimental ones. Our proposed microstructure simulation module was useful for designing hot forming process of Ti-6Al-4V alloy


2012 ◽  
pp. 297-305
Author(s):  
Jong-Taek Yeom ◽  
Eun-Jeoung Jung ◽  
Jeoung Han Kim ◽  
Jae-Keun Hong ◽  
Nho-Kwang Park ◽  
...  

2008 ◽  
Vol 575-578 ◽  
pp. 367-372 ◽  
Author(s):  
L.G. Guo ◽  
He Yang

Nowadays, 3D-FE Modeling and simulation is an indispensable method for the optimum design and precise control of radial-axial ring rolling process for its complexities. In this paper, the unique forming characteristics of radial-axial ring rolling have first been summarized, and then some key technologies for 3D-FE modeling of the process have been presented and their solution schemes have been given out, lastly the modeling and simulation of radial-axial ring rolling process have been realized using elastic-plastic dynamic explicit procedure under ABAQUS environment. The work provides an important basis and platform for the future investigations, such as forming mechanism and laws, process optimum design and precise control.


2007 ◽  
Vol 561-565 ◽  
pp. 1875-1878 ◽  
Author(s):  
Yong Xing Hao ◽  
Lin Hua ◽  
Gui Shan Chen ◽  
Dao Ming Wang

Non-stability factors affect stability of radial ring rolling process, and lead to fluctuating of ring position. This decreases rolling precision. Evaluating stability of the process is very important. A stability evaluating method is proposed. The stability can be measured with the mean square root of sequence of oscillation of ring geometrical centerline displacement. Using ABAQUS/Explicit, the stability is analyzed. It is showed that guide-roll position angle has the significant effect to the stability. If guide-roll is located at the tangential position to the ring’s fringe, the stability will vary with the angle between two planes. One passes through axes of guide roll and ring blank, and another passes through axes of drive roll and ring blank. The stability is highest when guide roll is situated at the position angle of 100˚to 130˚at exit side of ring rolling mill.


Sign in / Sign up

Export Citation Format

Share Document