scholarly journals Generation Mean Analysis of Yield and Yield Components of Early Generations of Interspecific Crosses of Tomato (Solanum lycopersicum L.)

2016 ◽  
Vol 10 (2) ◽  
pp. 98-103
Author(s):  
S.M. Kanneh ◽  
M.K. Osei ◽  
R. Akromah ◽  
J. Gyau
2019 ◽  
Vol 70 (3) ◽  
pp. 254 ◽  
Author(s):  
F. Oncu Ceylan ◽  
Alper Adak ◽  
Duygu Sari ◽  
Hatice Sari ◽  
Cengiz Toker

Although many interspecific crosses in Cicer species have successfully been carried out to improve the population in cultivated chickpea (Cicer arietinum L.), interspecific and backcross populations derived from mutants of Cicer species have not been studied for revealing suppressed genes responsible for heterotic effects and transgressive segregations. Therefore, the study aimed (i) to estimate heterosis (here, offspring superior to mid-parent value) and heterobeltiosis (offspring superior to better parent) for yield and yield components in the F1; (ii) to decipher transgressive segregation (extreme phenotypes) in F2 and backcross populations; and (iii) to reveal suppressed genes in interspecific and backcross populations (C. arietinum × F1 and C. reticulatum Ladiz.× F1) derived from interspecific crosses between a mutant of C. arietinum and a mutant of C. reticulatum. Heterobeltiosis was found for seed and biological yields, number of branches, and number of pods per plant in F1 progeny; heterosis was determined for the additional traits of 100-seed weight and harvest index. Heterobeltiosis and heterosis for yield and yield components in F1 progeny prompted transgressive segregation for these traits in F2 and backcross populations. In the backcrosses, C. arietinum × F1 crosses produced greater seed size and more pods per plant than C. reticulatum × F1, suggesting that C. arietinum × F1 backcrossing could improve yield components and lead to large seed size. Most of the high-yielding progeny in F2 and C. arietinum × F1 populations had double-podded nodes. It was concluded that the suppressed genes in a mutant of C. reticulatum or a mutant of C. arietinum played a crucial role in increasing transgressive segregations and allowing the cultivated chickpea to gain increased yield and yield components as well as large seed size.


2020 ◽  
pp. 141-152
Author(s):  
Desalegn Negasa Soresa ◽  
Gomathi Nayagam ◽  
Netsanet Bacha ◽  
Zerihun Jaleta

Estimates of heterosis for F1 hybrids over mid and better parent were computed for traits that showed significant differences between genotypes on analysis of variance. Heterosis for yield components and yield was studied using 8x8 half diallel cross in tomato (Solanum lycopersicum L.). The heterosis for yield was generally accompanied by heterosis for yield components. Heterosis for marketable fruit yield per plant ranged from (-63.4%) (P3xP8) to (33.8%) (P6xP8) and (-62.5%) (P3xP8) to (52.6%) (P5xP7), for mid parent and better parent respectively. Significant heterosis over better and mid-parent was observed for all the traits.  Best parent and Mid-parent heterosis (MPH) was highest  and in desirable direction for number of marketable fruit per plant  (29.3%; 29.2%)  in crosses ( P3xP6 for both ) and pericarp thickness  (46.3%; 57.6%) in crosses (P2xP6 and P4xP8), number of fruit cluster per plant (32.8%; 35.9%) in cross (P3xP6 for both), individual fruit weight (36.1%; 41.2%) in cross (P2xP8, P3xP5) and fruit diameter (28.4%; 28.3%) in cross (P3xP5; P2xP6), fruit length (23.07%; 20.4%)  in cross (P2xP6 for both). Out of 28 F1 crosses, positive and desirable heterosis by 10 crosses over better parent and 17 crosses over mid-parent were observed for total fruit density in tomato. An important heterosis both in heterobeltiosis and mid-parent was recorded in marketable fruit yield in ton per hectare. From all the crosses, seven crosses revealed positive from which three crosses are the most important P2xP7 (31%),  P3xP5 (20%) and P3xP6 (54%) in better parent heterosis. Similarly for mid-parent heterosis, only ten crosses out of 28 reveled positive while the rest 18 crosses showed the undesirable direction for marketable fruit yield indicating majority of the hybrids exhibited unfavorable heterotic response and only a few hybrids could be considered for selection.


2021 ◽  
pp. 36-41
Author(s):  
T SONIYA

The investigation was carried out to “Study the effect of intercropping on growth and yield of tomato (Solanum lycopersicum L.)” at a farmer’s field at Sorakalnatham, Natrampalli taluk, Tirupattur district, (Tamil Nadu) during January - May 2019. The experiment was laid out in randomized block design with ten treatments replicated thrice. The treatments comprised of three intercrops viz., radish, small onion and vegetable cowpea, and three levels of recommended dose of fertilizers (RDF) viz., 100, 125 and 150 % along with sole crop of tomato under 100 % RDF. The results indicated that the maximum values for growthattributes viz., plant height at 30, 60 and 90 DAT (48.5, 63.5 and 92.1 cm, respectively), primary branches/plant (11.5), leaf area index (3.58) and yield components like fruits plant-1 (35.5), single fruit weight (82.9 g) and weight of fruits plant-1 (2.9 kg) were recorded in the plots which received 25 t FYM ha-1 + 150 % RDF in tomato + small onion intercropping system. This was followed by thetomato + vegetable cowpea intercropping system which received 25 t FYM ha-1 + 150 % RDF.


Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Getachew Amare ◽  
Hailay Gebremedhin

Inappropriate spacing is one of the major problems in tomato production at the study area. A field experiment was conducted to determine inter- and intrarow plant spacing for yield and yield components of tomato at Shewarobit, central rift valley of Ethiopia, under irrigation condition. The treatment comprises of three intrarow spacing (20, 30, and 40 cm) and four interrow spacing (60, 80, 100, and 120 cm) replicated three times and arranged in randomized complete block design using tomato variety Weyno. Data collected on fruit yield and yield components were analysed using SAS. The main effect of interrow spacing significantly affected marketable fruit, unmarketable fruit, marketable fruit number, unmarketable fruit number, and fruit diameter. The 20 cm interrow spacing showed a marked increase in marketable fruit yield by 35.96% as compared to 30 cm spacing used by farmers. Planting tomato in closer interrow spacing (60 cm) resulted in 50% yield increment than the widest (120 cm) space between rows. Interaction effects of both inter- and intrarow spacing significantly (p < 0.05) affected plant height and fruit length. An intrarow and interrow spacing of 20 ∗ 100 cm and 20 ∗ 120 cm resulted in tallest plants and widest fruits, respectively. Therefore, farmers can use 20 cm intrarow spacing and 60 cm interrow spacing for planting of tomato seedling of Weyno variety.


Author(s):  
M. Arébalo-Madrigal ◽  
J.L. Escalante-González ◽  
J.B. Yáñez-Coutiño ◽  
M.E. Gallegos-Castro

Objetivo: Evaluar el desarrollo de plántula de tomate indeterminado bajo condiciones protegidas, aplicando  tres enraizadores  y un testigo para aumentar la producción del cultivo en la región. Diseño/metodología/aproximación: se utilizó bajo un diseño experimental en bloques completamente al azar, el cual consistió de cuatro tratamientos correspondiendo a cada uno de los bloques, donde cada bloque pertenecía a cuatro charolas de unicel de 200 cavidades con sustrato de BM2, con cuatro repeticiones cada uno, teniendo 15 unidades experimentales por tratamiento, sumando un total de 60 unidades experimentales, teniendo un total de 240 plántulas de tomate por todo el experimento. Resultados: Como resultado se obtuvo que el enraizador de Phyto Root  tuvo un gran efecto en cuanto al desarrollo de altura, grosor de tallo, numero de hojas, biomasa aérea y peso del cepellón, parámetros importantes que debe tener una plántula para su desarrollo y crecimiento al momento de trasplante a campo. Limitaciones del estudio/implicaciones: El manejo agronómico desde la siembra en charolas, es necesario que sea uniforme en todos los tratamientos y las repeticiones para tener mejores resultados en cuanto el efecto de los enraizadores. Hallazgos/conclusiones: Para obtener plántulas de buena calidad en el momento de trasplante a campo se le recomienda a la empresa y a los productores de plántulas utilizar el tratamiento de Phyto Root, ya que fue la que mejor respuesta tuvo.


Sign in / Sign up

Export Citation Format

Share Document