yield component traits
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 56)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Mahmudul Hasan Khan ◽  
Mohd Y. Rafii ◽  
Shairul Izan Ramlee ◽  
Mashitah Jusoh ◽  
Md Al Mamun

AbstractThe stability and high yielding of Vigna subterranea L. Verdc. genotype is an important factor for long-term development and food security. The effects of G × E interaction on yield stability in 30 Bambara groundnut genotypes in four different Malaysian environments were investigated in this research. The experiment used a randomized complete block design with three replications in each environment. Over multiple harvests, yield component traits such as the total number of pods per plant, fresh pods weight (g), hundred seeds weight (g), and yield per hectare were evaluated in the main and off-season in 2020 and 2021. Stability tests for multivariate stability parameters were performed based on analyses of variance. For all the traits, the pooled analysis of variance revealed highly significant (p < 0.01) variations between genotypes, locations, seasons, and genotypes by environment (G × E interaction). A two-dimensional GGE biplot was generated using the first two principal components (axis 1 and axis 2), which accounted for 94.97% and 3.11% difference in GEI for yield per hectare, respectively. Season and location were found to be the most significant causes of yield heterogeneity, accounting for 31.13% and 14.02% of overall G + E + G × E variation, respectively, according to the combined study of variance. The GGE biplot revealed that the three winning genotypes G1, G3, and G5 appear across environments whereas AMMI model exposed genotypes viz G18, G14, G7, G3, G1, and G5 as best performer. Based on ideal genotype ranking genotype G1 was the best performer, with a high mean yield and high stability in the tested environment. According to the AEC line, genotypes G1 and G3 were extremely stable, while genotypes G2 and G4 were low stable, with a high average yielding per hectare. A GGE and AMMI biplot graphically showed the interrelationships between the tested environment and genotypes, classified genotypes into three categories as well as simplifying visual evaluations, according to this investigation. According to our results, breeding could improve yield production, and the genotypes discovered could be recommended for commercial cultivation.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
E. M. Abd El Lateef ◽  
Asal M. Wali ◽  
M. S. Abd El-Salam

Abstract Background The relation between the macronutrients P and K seems to be synergistic due to the beneficial effects of the interaction between (P × K) and varies according to the variety used. Therefore, two field experiments were conducted during 2018 and 2019 summer seasons to study the effect of interaction of phosphatic fertilization at 0, 37.5 and 75 kg P2O5 ha−1 and potassic fertilization at 0 and 57.6 kg K2O ha−1 on the yield and yield components of two mungbean varieties, viz. Kawmy-l and V2010, as well as determining the relationship between the two nutrients interaction. Results The results showed that there were varietal differences in yield and yield components regardless fertilizer application. Either phosphatic or potassic fertilization significantly increased mungbean yield and yield components traits. Significant effects due to the interaction (V × P) were reported on yield component traits in both seasons. Furthermore, the triple interaction (V × P × K) indicates that synergistic effect was reported for the two varieties and was more clearer for V2010 where it needed both of P and K nutrients to out yield the greatest seed yield ha−1, while Kawmy-1 gave the greatest seed yield ha−1 without K application. Conclusion It could be concluded from this study that mungbean varieties differ in their response to the synergistic interaction effect of P and K and the combination of 75 kg P2O5 + 57.6 kg K2O is preferable for V2010 and 75 kg P2O5 alone for Kawmy-1 to produce the greatest yield.


2021 ◽  
Vol 12 ◽  
Author(s):  
Moses Nyine ◽  
Elina Adhikari ◽  
Marshall Clinesmith ◽  
Robert Aiken ◽  
Bliss Betzen ◽  
...  

The introgression from wild relatives have a great potential to broaden the availability of beneficial allelic diversity for crop improvement in breeding programs. Here, we assessed the impact of the introgression from 21 diverse accessions of Aegilops tauschii, the diploid ancestor of the wheat D genome, into 6 hard red winter wheat cultivars on yield and yield component traits. We used 5.2 million imputed D genome SNPs identified by the whole-genome sequencing of parental lines and the sequence-based genotyping of introgression population, including 351 BC1F3:5 lines. Phenotyping data collected from the irrigated and non-irrigated field trials revealed that up to 23% of the introgression lines (ILs) produce more grain than the parents and check cultivars. Based on 16 yield stability statistics, the yield of 12 ILs (3.4%) was stable across treatments, years, and locations; 5 of these lines were also high yielding lines, producing 9.8% more grain than the average yield of check cultivars. The most significant SNP- and haplotype-trait associations were identified on chromosome arms 2DS and 6DL for the spikelet number per spike (SNS), on chromosome arms 2DS, 3DS, 5DS, and 7DS for grain length (GL) and on chromosome arms 1DL, 2DS, 6DL, and 7DS for grain width (GW). The introgression of haplotypes from A. tauschii parents was associated with an increase in SNS, which was positively correlated with a heading date (HD), whereas the haplotypes from hexaploid wheat parents were associated with an increase in GW. We show that the haplotypes on 2DS associated with an increase in the spikelet number and HD are linked with multiple introgressed alleles of Ppd-D1 identified by the whole-genome sequencing of A. tauschii parents. Meanwhile, some introgressed haplotypes exhibited significant pleiotropic effects with the direction of effects on the yield component traits being largely consistent with the previously reported trade-offs, there were haplotype combinations associated with the positive trends in yield. The characterized repertoire of the introgressed haplotypes derived from A. tauschii accessions with the combined positive effects on yield and yield component traits in elite germplasm provides a valuable source of alleles for improving the productivity of winter wheat by optimizing the contribution of component traits to yield.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 558
Author(s):  
Xing Huang ◽  
Su Jang ◽  
Backki Kim ◽  
Zhongze Piao ◽  
Edilberto Redona ◽  
...  

Rice yield is a complex trait that is strongly affected by environment and genotype × environment interaction (GEI) effects. Consideration of GEI in diverse environments facilitates the accurate identification of optimal genotypes with high yield performance, which are adaptable to specific or diverse environments. In this study, multiple environment trials were conducted to evaluate grain yield (GY) and four yield-component traits: panicle length, panicle number, spikelet number per panicle, and thousand-grain weight. Eighty-nine rice varieties were cultivated in temperate, subtropical, and tropical regions for two years. The effects of both GEI (12.4–19.6%) and environment (23.6–69.6%) significantly contributed to the variation of all yield-component traits. In addition, 37.1% of GY variation was explained by GEI, indicating that GY performance was strongly affected by the different environmental conditions. GY performance and genotype stability were evaluated using simultaneous selection indexing, and 19 desirable genotypes were identified with high productivity and broad adaptability across temperate, subtropical, and tropical conditions. These optimal genotypes could be recommended for cultivation and as elite parents for rice breeding programs to improve yield potential and general adaptability to climates.


2021 ◽  
Vol 17 (2) ◽  
pp. 287-292
Author(s):  
Priya Tiwari ◽  
Stuti Sharma

Yield is a complex trait subjective to several components and environmental factors. Therefore, it becomes necessary to apply such technique which can identify and prioritize the key traits to lessen the number of traits for valuable selection and genetic gain. Principal component analysis is primarily a renowned data reduction technique which identifies the least number of components and explain maximum variability, it also rank genotypes on the basis of PC scores. PCA was calculated using Ingebriston and Lyon (1985) method. In present study, PCA performed for phenological and yield component traits presented that out of thirteen, only five principal components (PCs) exhibited more than 1.00 eigen value, and showed about 80.28 per cent of total variability among the traits. Scree plot explained the percentage of variance associated with each principal component obtained by illustrating a graph between eigen values and principal component numbers. PC1 showed 26.12 per cent variability with eigen value 3.40. Graph depicted that the maximum variation was observed in PC1 in contrast to other four PCs. The PC1 was further associated with the phenological and yield attributing traits viz., number of nodes per plant, number of pod cluster per plant, number of pod per plant. PC2 exhibited positive effect for harvest index. The PC3 was more related to yield related traits i.e., number of seeds per pod, number of seeds per plant and biological yield per plant, whereas PC4 was more loaded with phenological traits. PC5 was further related to yield and yield contributing traits i.e. number of primary branches per plant, seed yield per plant and 100 seed weight. A high value of PC score of a particular genotype in a particular PC denotes high value for those variables falling under that specific principal component. Pusa Vishal found in PC 2, in PC 3, PC 4 and PC 5, can be considered as an ideal breeding material for selection and for further deployment in defined breeding programme.


2021 ◽  
Author(s):  
Moses Nyine ◽  
Elina Adhikari ◽  
Marshall Clinesmith ◽  
Robert Aiken ◽  
Bliss Betzen ◽  
...  

Introgression from wild relatives have a great potential to broaden beneficial allelic diversity available for crop improvement in breeding programs. Here, we assessed the impact of introgression from 21 diverse accessions of Aegilops tauschii, the diploid ancestor of the wheat D genome, into six hard red winter wheat cultivars on yield and yield component traits. We used 5.2 million imputed D genome SNPs identified by whole-genome sequencing of parental lines and the sequence-based genotyping of introgression population including 351 BC1F3:5 lines. Phenotyping data collected from the irrigated and non-irrigated field trials revealed that up to 23% of the introgression lines produce more grain than the parents and check cultivars. Based on sixteen yield stability statistics, the yield of twelve introgression lines (3.4%) was stable across treatments, years and locations; five of these lines were also high yielding, producing 9.8% more grain than the average yield of check cultivars. The most significant SNP-trait and haplotype-trait associations were identified on chromosome arms 2DS and 6DL for spikelet number per spike (SNS), on chromosome arms 2DS, 3DS, 5DS and 7DS for grain length and on chromosome arms 1DL, 2DS, 6DL and 7DS for grain width. Introgression of haplotypes from Ae. tauschii parents was associated with increase in SNS, which positively correlated with heading date, whereas haplotypes from hexaploid wheat parents were associated with increased grain width. While some introgressed haplotypes exhibited significant pleiotropic effects with the direction of effects on the yield component traits being largely consistent with the previously reported trade-offs, there were haplotype combinations associated with the positive trends in yield. The characterized repertoire of the introgressed haplotypes derived from Ae. tauschii accessions with the combined positive effects on yield and yield components traits in elite germplasm provides a valuable source of alleles for improving the productivity of winter wheat by optimizing the contribution of component traits to yield.


2021 ◽  
Vol 100 (2) ◽  
Author(s):  
JIAO CHEN ◽  
LINYU TAI ◽  
LAN LUO ◽  
JING XIANG ◽  
ZHENGWU ZHAO

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250665
Author(s):  
Mohsen Yoosefzadeh-Najafabadi ◽  
Dan Tulpan ◽  
Milad Eskandari

Improving genetic yield potential in major food grade crops such as soybean (Glycine max L.) is the most sustainable way to address the growing global food demand and its security concerns. Yield is a complex trait and reliant on various related variables called yield components. In this study, the five most important yield component traits in soybean were measured using a panel of 250 genotypes grown in four environments. These traits were the number of nodes per plant (NP), number of non-reproductive nodes per plant (NRNP), number of reproductive nodes per plant (RNP), number of pods per plant (PP), and the ratio of number of pods to number of nodes per plant (P/N). These data were used for predicting the total soybean seed yield using the Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Random Forest (RF), machine learning (ML) algorithms, individually and collectively through an ensemble method based on bagging strategy (E-B). The RBF algorithm with highest Coefficient of Determination (R2) value of 0.81 and the lowest Mean Absolute Errors (MAE) and Root Mean Square Error (RMSE) values of 148.61 kg.ha-1, and 185.31 kg.ha-1, respectively, was the most accurate algorithm and, therefore, selected as the metaClassifier for the E-B algorithm. Using the E-B algorithm, we were able to increase the prediction accuracy by improving the values of R2, MAE, and RMSE by 0.1, 0.24 kg.ha-1, and 0.96 kg.ha-1, respectively. Furthermore, for the first time in this study, we allied the E-B with the genetic algorithm (GA) to model the optimum values of yield components in an ideotype genotype in which the yield is maximized. The results revealed a better understanding of the relationships between soybean yield and its components, which can be used for selecting parental lines and designing promising crosses for developing cultivars with improved genetic yield potential.


Author(s):  
Kyle Isham ◽  
Rui Wang ◽  
Weidong Zhao ◽  
Justin Wheeler ◽  
Natalie Klassen ◽  
...  

Abstract Key message Four genomic regions on chromosomes 4A, 6A, 7B, and 7D were discovered, each with multiple tightly linked QTL (QTL clusters) associated with two to three yield components. The 7D QTL cluster was associated with grain yield, fertile spikelet number per spike, thousand kernel weight, and heading date. It was located in the flanking region of FT-D1, a homolog gene of Arabidopsis FLOWERING LOCUS T, a major gene that regulates wheat flowering. Abstract Genetic manipulation of yield components is an important approach to increase grain yield in wheat (Triticum aestivum). The present study used a mapping population comprised of 181 doubled haploid lines derived from two high-yielding spring wheat cultivars, UI Platinum and LCS Star. The two cultivars and the derived population were assessed for six traits in eight field trials primarily in Idaho in the USA. The six traits were grain yield, fertile spikelet number per spike, productive tiller number per unit area, thousand kernel weight, heading date, and plant height. Quantitative Trait Locus (QTL) analysis of the six traits was conducted using 14,236 single-nucleotide polymorphism (SNP) markers generated from the wheat 90 K SNP and the exome and promoter capture arrays. Of the 19 QTL detected, 14 were clustered in four chromosomal regions on 4A, 6A, 7B and 7D. Each of the four QTL clusters was associated with multiple yield component traits, and these traits were often negatively correlated with one another. As a result, additional QTL dissection studies are needed to optimize trade-offs among yield component traits for specific production environments. Kompetitive allele-specific PCR markers for the four QTL clusters were developed and assessed in an elite spring wheat panel of 170 lines, and eight of the 14 QTL were validated. The two parents contain complementary alleles for the four QTL clusters, suggesting the possibility of improving grain yield via genetic recombination of yield component loci.


Sign in / Sign up

Export Citation Format

Share Document