tomato production
Recently Published Documents


TOTAL DOCUMENTS

1152
(FIVE YEARS 373)

H-INDEX

39
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Martha Sudermann ◽  
Lillian McGilp ◽  
Gregory Vogel ◽  
Melissa Regnier ◽  
Alejandraa Rodríguez Jaramillo ◽  
...  

High tunnels extend the growing season of high value crops, including tomatoes, but the environmental conditions within high tunnels favor the spread of the tomato leaf mold pathogen, Passalora fulva (syn. Cladosporium fulvum). Tomato leaf mold results in defoliation, and if severe, losses in yield. Despite substantial research, little is known regarding the genetic structure and diversity of populations of P. fulva associated with high tunnel tomato production in the United States. From 2016 to 2019, a total of 50 P. fulva isolates were collected from tomato leaf samples in high tunnels in the Northeast and Minnesota. Other Cladosporium species were also isolated from the leaf surfaces. Koch’s postulates were conducted to confirm that P. fulva was the cause of the disease symptoms observed. Race determination experiments revealed that the isolates belonged to either race 0 (six isolates) or race 2 (44 isolates). Polymorphisms were identified within four previously characterized effector genes Avr2, Avr4, Avr4e, and Avr9. The largest number of polymorphisms were observed for Avr2. Both mating type genes, MAT1-1-1 and MAT1-2-1, were present in the isolate collection. For further insights into the pathogen diversity, the 50 isolates were genotyped at 7,514 single-nucleotide polymorphism loci using genotyping-by-sequencing: differentiation by region but not by year was observed. Within the collection of 50 isolates, there were 18 distinct genotypes. Information regarding P. fulva population diversity will enable better management recommendations for growers, as high tunnel production of tomatoes expands.


2022 ◽  
pp. 1-10
Author(s):  
Rahul Chandel ◽  
A. T. Sadashiva ◽  
Kundapura V. Ravishankar ◽  
Anjan Das ◽  
Bichhinna Maitri Rout ◽  
...  

Abstract Tomato is a pivotal vegetable crop worldwide concerning human nutrition, economy and in service to biotechnology. Tomato leaf curl virus (ToLCV) is a begomovirus transmitted through the whitefly (Bemisia tabaci) and is responsible for severe losses in tomato production. In this context, the current investigation was carried out to determine heterotic combiners with high yield, resistance to ToLCV and mode of gene action for economically important traits. For this, 11 prescreened inbred lines were crossed in a half diallel fashion to generate 55 F1 hybrids. The 55 crosses with 11 parents and commercial checks were evaluated for different horticultural traits and resistance to ToLCV. The molecular validation with SCAR markers TG0302 and SCAR1 confirmed the presence of ToLCV-resistant genes in parents and their crosses. The hybrid IIHR-2902 × IIHR-2852 showed the presence of both Ty-2 and Ty-3 alleles in the homozygous state. The estimation of σSCA2 and σGCA2 was significant. It also indicated that the genetic control of target traits was under additive and non-additive gene effects. The values of σA/D2 along with σGCA2/σSCA2 found to be less than unity indicates the preponderance of non-additive gene action in the expression of the studied traits except for percent disease incidence. The parental line IIHR-2919 was the best combiner for fruit and yield traits. The cross combinations IIHR-2913 × IIHR-2898 exhibited significantly higher economic heterosis for yield along with the presence of Ty-2 and Ty-3 genes. The study paves the way for breeding high yielding and ToLCV-resistant hybrids in tomato.


2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Nongthombam Olivia Devi ◽  
R. K. Tombisana Devi ◽  
Manashi Debbarma ◽  
Monika Hajong ◽  
Sushanti Thokchom

Abstract Background Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (FOL) is a serious disease that causes significant economic losses in tomato production. Seventeen endophytic Bacillus isolates from tomato roots of Meghalaya were tested for antagonistic and plant growth promotion activities. Dominating arbuscular mycorrhiza fungi (AMF) spores were isolated from the rhizosphere soils of tomato grown in Meghalaya. The effect of different combinations of AMF and endophytic Bacillus on Fusarium wilt severity and growth of tomato plant under pot and field conditions was studied. Results The endophytic Bacillus isolates ERBS51 and ERBS10 showed a maximum inhibition against FOL, with 58.43 and 55.68%, respectively, in a dual culture experiment. ERBS51 and ERBS10 were identified as Bacillus velezensis and Bacillus sp., respectively, based on 16s rRNA sequencing. Both isolates were found positive for iturin A, surfactin, bacillomycin D, protease, cellulase, pectinase, alpha-amylase, siderophore, ammonia production and ZnCO3 solubilization. Funneliformis mosseae and Glomus fasciculatum were the dominating AMF species in tomato rhizosphere of Meghalaya. The result of pot and field experiments revealed that out of all the treatments, combination of Funneliformis mosseae + Glomus fasciculatum + Bacillus velezensis + Bacillus sp. was shown to be the best in reducing the severity of Fusarium wilt to 77.44 and 66.74%, respectively. F. mosseae + G. fasciculatum + B. velezensis + Bacillus sp. also recorded the highest in most growth attributes and yield. Conclusions Endophytic Bacillus (B. velezensis and Bacillus sp.) and AMF (F. mosseae and G. fasciculatum) were safe and effective biocontrol agents against Fusarium wilt of tomato.


Author(s):  
Mitzy F Porras ◽  
Antonino Malacrino ◽  
Chanratha An ◽  
Kim Hian Seng ◽  
Ong Socheath ◽  
...  

For several years, pest management in tomato production in Cambodia has generally focused on the use of synthetic pesticides. We compared conventional pest management (farmers’ traditional practices) with an IPM program on 12 farms in the northwestern part of Cambodia. The IPM program combined cultural, biological, and chemical practices. We found that IPM practices reduced aphid damage by 46% and diseases such as Fusarium wilt and damping-off were substantially reduced. Our results indicate that the IPM package increased tomato yield and income by an average of 23% and 34%, respectively, compared to conventional practices during both dry and rainy seasons.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 106
Author(s):  
Fei Zhao ◽  
Hideo Yoshida ◽  
Eiji Goto ◽  
Shoko Hikosaka

In this study, we developed an automatic irrigation method using an image-based irrigation system for high-quality tomato production in a greenhouse by investigating effects of a diurnal periodic cycle of irrigation on the photosynthesis, growth, yield, and fruit quality of tomatoes. The diurnal periodic cycle in a moderate wilting–full recovery treatment (MR) with a medium threshold value was more frequent than that in a severe wilting–full recovery treatment (SR) with a high threshold value. Mean daily maximum wilting ratios for MR and SR were 7.2% and 11.3%, respectively, when wilting ratios were set to threshold values of 7% and 14%, respectively. Total irrigation amounts in MR and SR were similar and lower than that in the untreated control. Net photosynthetic rate decreased under water stress, with values in MR being higher than that in SR, and recovered rapidly to more than 90% of its maximum value following irrigation. Plant growth and fruit yield per plant in MR and SR were lower than that in the control. Water stress treatment could improve fruit quality when it commenced at the anthesis stage or early fruit development stage. Total irrigation amount was a more important parameter than the threshold value for controlling the growth, yield, and fruit quality of tomatoes.


2022 ◽  
pp. 130459
Author(s):  
Fidel Maureira ◽  
Kirti Rajagopalan ◽  
Claudio O. Stöckle

2022 ◽  
Vol 291 ◽  
pp. 110537
Author(s):  
Michel J. Verheul ◽  
Henk F.R. Maessen ◽  
Martina Paponov ◽  
Anush Panosyan ◽  
Dmitry Kechasov ◽  
...  
Keyword(s):  

Author(s):  
Ashok Gulati ◽  
Harsh Wardhan ◽  
Pravesh Sharma

AbstractTomatoes, onions and potatoes, popularly known as the TOP vegetables, are the three largest cultivated, produced and consumed vegetables in India. Their production has increased dramatically over the years, making India the second-largest producer of all the three vegetables in the world just after China. Recent figures put tomato production at 19 million metric tonnes (MMT), onion production at 22.8 MMT and potato production at 50.2 MMT in 2018–19.


2022 ◽  
Vol 147 (1) ◽  
pp. 35-44
Author(s):  
Jian Li ◽  
Jessica Chitwood-Brown ◽  
Gurleen Kaur ◽  
Joanne A. Labate ◽  
G.E. Vallad ◽  
...  

Fusarium wilt of tomato (Solanum lycopersicum), caused by fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol), is one of the most important diseases in tomato production. Three races of the pathogen are described, and race-specific resistance genes have been applied in commercial tomato cultivars for controlling the disease. Race 3 (Fol3) threatens tomato production in many regions around the world, and novel resistance resources could expand the diversity and durability of Fol resistance. The wild tomato species, Solanum pennellii, is reported to harbor broad resistance to Fol and was the source of two known Fol3 resistance genes. In this study, we evaluated 42 S. pennellii accessions for resistance to each fusarium wilt race. F1 plants, developed from crossing each accession with the Fol3 susceptible line ‘Suncoast’, were evaluated for Fol3 resistance, and BC1F1 plants were screened to determine the likelihood that Fol3 resistance was based on a novel locus (loci). Nearly all accessions showed resistance to Fol3, and many accessions were resistant to all races. Evaluation of F1 plants indicated a dominant resistance effect to Fol3 from most accessions. Genetic analysis indicated 24 accessions are expected to contain one or more novel Fol3 resistance loci other than an allele near the I-3 locus. To investigate genetic structure of the S. pennellii accessions used in this study, we genotyped all 42 accessions using genotyping by sequencing. Approximately 20% of the single nucleotide polymorphism (SNP) loci were heterozygous across accessions, likely due to the outcrossing nature of the species. Genetic structure analysis at 49,120 unique SNP loci across accessions identified small but obvious genetic differentiations.


Sign in / Sign up

Export Citation Format

Share Document