scholarly journals Subshifts of finite type which have completely positive entropy

2011 ◽  
Vol 29 (4) ◽  
pp. 1497-1516 ◽  
Author(s):  
Christopher Hoffman ◽  
1986 ◽  
Vol 6 (3) ◽  
pp. 415-448 ◽  
Author(s):  
Karl Petersen

AbstractVarious definitions of the entropy for countable-state topological Markov chains are considered. Concrete examples show that these quantities do not coincide in general and can behave badly under nice maps. Certain restricted random walks which arise in a problem in magnetic recording provide interesting examples of chains. Factors of some of these chains have entropy equal to the growth rate of the number of periodic orbits, even though they contain no subshifts of finite type with positive entropy; others are almost sofic – they contain subshifts of finite type with entropy arbitrarily close to their own. Attempting to find the entropies of such subshifts of finite type motivates the method of entropy computation by loop analysis, in which it is not necessary to write down any matrices or evaluate any determinants. A method for variable-length encoding into these systems is proposed, and some of the smaller subshifts of finite type inside these systems are displayed.


2013 ◽  
Vol 34 (6) ◽  
pp. 2054-2065 ◽  
Author(s):  
RONNIE PAVLOV

AbstractA topological dynamical system was defined by Blanchard [Fully Positive Topological Entropy and Topological Mixing (Symbolic Dynamics and Applications (in honor of R. L. Adler), 135). American Mathematical Society Contemporary Mathematics, Providence, RI, 1992, pp. 95–105] to have topologically completely positive entropy (or TCPE) if its only zero entropy factor is the dynamical system consisting of a single fixed point. For ${ \mathbb{Z} }^{d} $ shifts of finite type, we give a simple condition equivalent to having TCPE. We use our characterization to derive a similar equivalent condition to TCPE for the subclass of ${ \mathbb{Z} }^{d} $ group shifts, which was proved by Lind and Schmidt in the abelian case [Homoclinic points of algebraic ${ \mathbb{Z} }^{d} $-actions. J. Amer. Math. Soc. 12(4) (1999), 953–980] and by Boyle and Schraudner in the general case [${ \mathbb{Z} }^{d} $ group shifts and Bernoulli factors. Ergod. Th. & Dynam. Sys. 28(2) (2008), 367–387]. We also give an example of a ${ \mathbb{Z} }^{2} $ shift of finite type which has TCPE but is not even topologically transitive, and prove a result about block gluing ${ \mathbb{Z} }^{d} $ SFTs motivated by our characterization of TCPE.


2000 ◽  
Vol 20 (3) ◽  
pp. 859-874 ◽  
Author(s):  
ANTHONY N. QUAS ◽  
PAUL B. TROW

We show that every shift of finite type $X$ with positive entropy has proper subshifts of finite type with entropy strictly smaller than the entropy of $X$, but with entropy arbitrarily close to the entropy of $X$. Consequently, $X$ contains an infinite chain of subshifts of finite type which is strictly decreasing in entropy.


2017 ◽  
Vol 38 (5) ◽  
pp. 1894-1922
Author(s):  
RONNIE PAVLOV

In a previous paper [Pavlov, A characterization of topologically completely positive entropy for shifts of finite type. Ergod. Th. & Dynam. Sys.34 (2014), 2054–2065], the author gave a characterization for when a $\mathbb{Z}^{d}$-shift of finite type has no non-trivial subshift factors with zero entropy, a property which we here call zero-dimensional topologically completely positive entropy. In this work, we study the difference between this notion and the more classical topologically completely positive entropy of Blanchard. We show that there are one-dimensional subshifts and two-dimensional shifts of finite type which have zero-dimensional topologically completely positive entropy but not topologically completely positive entropy. In addition, we show that strengthening the hypotheses of the main result of Pavlov [A characterization of topologically completely positive entropy for shifts of finite type. Ergod. Th. & Dynam. Sys.34 (2014), 2054–2065] yields a sufficient condition for a $\mathbb{Z}^{d}$-shift of finite type to have topologically completely positive entropy.


Author(s):  
Manfred Denker ◽  
Christian Grillenberger ◽  
Karl Sigmund

2019 ◽  
Vol 109 (3) ◽  
pp. 289-298
Author(s):  
KEVIN AGUYAR BRIX ◽  
TOKE MEIER CARLSEN

AbstractA one-sided shift of finite type $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines on the one hand a Cuntz–Krieger algebra ${\mathcal{O}}_{A}$ with a distinguished abelian subalgebra ${\mathcal{D}}_{A}$ and a certain completely positive map $\unicode[STIX]{x1D70F}_{A}$ on ${\mathcal{O}}_{A}$. On the other hand, $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines a groupoid ${\mathcal{G}}_{A}$ together with a certain homomorphism $\unicode[STIX]{x1D716}_{A}$ on ${\mathcal{G}}_{A}$. We show that each of these two sets of data completely characterizes the one-sided conjugacy class of $\mathsf{X}_{A}$. This strengthens a result of Cuntz and Krieger. We also exhibit an example of two irreducible shifts of finite type which are eventually conjugate but not conjugate. This provides a negative answer to a question of Matsumoto of whether eventual conjugacy implies conjugacy.


2008 ◽  
Vol 28 (1) ◽  
pp. 87-124 ◽  
Author(s):  
A. H. DOOLEY ◽  
V. YA. GOLODETS ◽  
D. J. RUDOLPH ◽  
S. D. SINEL’SHCHIKOV

AbstractA new approach to actions of countable amenable groups with completely positive entropy (cpe), allowing one to answer some basic questions in this field, was recently developed. The question of the existence of cpe actions which are not Bernoulli was raised. In this paper, we prove that every countable amenable groupG, which contains an element of infinite order, has non-Bernoulli cpe actions. In fact we can produce, for any$h \in (0, \infty ]$, an uncountable family of cpe actions of entropyh, which are pairwise automorphically non-isomorphic. These actions are given by a construction which we call co-induction. This construction is related to, but different from the standard induced action. We study the entropic properties of co-induction, proving that ifαGis co-induced from an actionαΓof a subgroup Γ, thenh(αG)=h(αΓ). We also prove that ifαΓis a non-Bernoulli cpe action of Γ, thenαGis also non-Bernoulli and cpe. Hence the problem of finding an uncountable family of pairwise non-isomorphic cpe actions of the same entropy is reduced to one of finding an uncountable family of non-Bernoulli cpe actions of$\mathbb Z$, which pairwise satisfy a property we call ‘uniform somewhat disjointness’. We construct such a family using refinements of the classical cutting and stacking methods.


Sign in / Sign up

Export Citation Format

Share Document