scholarly journals Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
JinMyong An ◽  
JinMyong Kim ◽  
KyuSong Chae

<p style='text-indent:20px;'>We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger (INLS) equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ iu_{t} +\Delta u = |x|^{-b} f(u), \;u(0)\in H^{s} (\mathbb R^{n} ), $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ n\in \mathbb N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ 0&lt;s&lt;\min \{ n, \; 1+n/2\} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 0&lt;b&lt;\min \{ 2, \;n-s, \;1+\frac{n-2s}{2} \} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f(u) $\end{document}</tex-math></inline-formula> is a nonlinear function that behaves like <inline-formula><tex-math id="M5">\begin{document}$ \lambda |u|^{\sigma } u $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M6">\begin{document}$ \sigma&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ \lambda \in \mathbb C $\end{document}</tex-math></inline-formula>. Recently, the authors in [<xref ref-type="bibr" rid="b1">1</xref>] proved the local existence of solutions in <inline-formula><tex-math id="M8">\begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M9">\begin{document}$ 0\le s&lt;\min \{ n, \; 1+n/2\} $\end{document}</tex-math></inline-formula>. However even though the solution is constructed by a fixed point technique, continuous dependence in the standard sense in <inline-formula><tex-math id="M10">\begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M11">\begin{document}$ 0&lt; s&lt;\min \{ n, \; 1+n/2\} $\end{document}</tex-math></inline-formula> doesn't follow from the contraction mapping argument. In this paper, we show that the solution depends continuously on the initial data in the standard sense in <inline-formula><tex-math id="M12">\begin{document}$ H^{s}(\mathbb R^{n} ) $\end{document}</tex-math></inline-formula>, i.e. in the sense that the local solution flow is continuous <inline-formula><tex-math id="M13">\begin{document}$ H^{s}(\mathbb R^{n} )\to H^{s}(\mathbb R^{n} ) $\end{document}</tex-math></inline-formula>, if <inline-formula><tex-math id="M14">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula> satisfies certain assumptions.</p>

2021 ◽  
Vol 18 (03) ◽  
pp. 701-728
Author(s):  
Huali Zhang

We prove the local existence, uniqueness and stability of local solutions for the Cauchy problem of two-dimensional compressible Euler equations, where the initial data of velocity, density, specific vorticity [Formula: see text] and the spatial derivative of specific vorticity [Formula: see text].


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Yu-Zhu Wang

We consider the Cauchy problem for the damped nonlinear hyperbolic equation inn-dimensional space. Under small condition on the initial value, the global existence and asymptotic behavior of the solution in the corresponding Sobolev spaces are obtained by the contraction mapping principle.


Author(s):  
Haifeng Shang

We study the Cauchy problem for the degenerate and uniformly parabolic equations with gradient term. The local existence, global existence and non-existence of solutions are obtained. In the case of global solvability, we get the exact estimates of a solution. In particular, we obtain the global existence of solutions in the limiting case.


Author(s):  
Reinhard Racke ◽  
Belkacem Said-Houari

We consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan–Moore–Gibson–Thompson (JMGT) equation arising in acoustics as an alternative model to the well-known Kuznetsov equation. We show a local existence result in appropriate function spaces, and, using the energy method together with a bootstrap argument, we prove a global existence result for small data, without using the linear decay. Finally, polynomial decay rates in time for a norm related to the solution will be obtained.


2019 ◽  
Vol 18 (02) ◽  
pp. 333-358
Author(s):  
Ben Duan ◽  
Zhen Luo ◽  
Yan Zhou

In this paper, we consider the Cauchy problem of a viscous compressible shallow water equations with the Coriolis force term and non-constant viscosities. More precisely, the viscous coefficients are constants multiple of height, the equations are degenerate when vacuum appears. For initial data allowing vacuum, the local existence of strong solution is obtained and a blow-up criterion is established.


Sign in / Sign up

Export Citation Format

Share Document