Global well-posedness of the Cauchy problem for the 3D Jordan–Moore–Gibson–Thompson equation

Author(s):  
Reinhard Racke ◽  
Belkacem Said-Houari

We consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan–Moore–Gibson–Thompson (JMGT) equation arising in acoustics as an alternative model to the well-known Kuznetsov equation. We show a local existence result in appropriate function spaces, and, using the energy method together with a bootstrap argument, we prove a global existence result for small data, without using the linear decay. Finally, polynomial decay rates in time for a norm related to the solution will be obtained.

Filomat ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 1745-1773
Author(s):  
Salah Boulaaras ◽  
Abdelbaki Choucha ◽  
Djamel Ouchenane

In this paper, we consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan-Moore-Gibson-Thompson (JMGT) equation with the presence of both memory. Using the well known energy method combined with Lyapunov functionals approach, we prove a general decay result, and we show a local existence result in appropriate function spaces. Finally, we prove a global existence result for small data, and we prove the uniqueness of the generalized solution.


Author(s):  
José Bonet ◽  
Wolfgang Lusky ◽  
Jari Taskinen

We consider the Cauchy problem for a general class of parabolic partial differential equations in the Euclidean space ℝ N . We show that given a weighted L p -space $L_w^p({\mathbb {R}}^N)$ with 1 ⩽ p < ∞ and a fast growing weight w, there is a Schauder basis $(e_n)_{n=1}^\infty$ in $L_w^p({\mathbb {R}}^N)$ with the following property: given an arbitrary positive integer m there exists n m  > 0 such that, if the initial data f belongs to the closed linear span of e n with n ⩾ n m , then the decay rate of the solution of the problem is at least t−m for large times t. The result generalizes the recent study of the authors concerning the classical linear heat equation. We present variants of the result having different methods of proofs and also consider finite polynomial decay rates instead of unlimited m.


2021 ◽  
Vol 18 (03) ◽  
pp. 701-728
Author(s):  
Huali Zhang

We prove the local existence, uniqueness and stability of local solutions for the Cauchy problem of two-dimensional compressible Euler equations, where the initial data of velocity, density, specific vorticity [Formula: see text] and the spatial derivative of specific vorticity [Formula: see text].


1986 ◽  
Vol 33 (3) ◽  
pp. 407-418 ◽  
Author(s):  
Nikolaos S. Papageorgiou

We consider the Cauchy problem x (t) = f (t,x (t)), x (0) = x0 in a nonreflexive Banach space X and for f: T × X → X a weakly continuous vector field. Using a compactness hypothesis involving a weak measure of noncompactness we prove an existence result that generalizes earlier theorems by Chow-Shur, Kato and Cramer-Lakshmikantham-Mitchell.


2013 ◽  
Vol 10 (04) ◽  
pp. 677-701
Author(s):  
CARLOS ALMADA

We derive L∞–L1 decay rate estimates for solutions of the shifted wave equation on certain symmetric spaces (M, g). The Cauchy problem for the shifted wave operator on these spaces was studied by Helgason, who obtained a closed form for its solution. Our results extend to this new context the classical estimates for the wave equation in ℝn. Then, following an idea from Klainerman, we introduce a new norm based on Lie derivatives with respect to Killing fields on M and we derive an estimate for the case that n = dim M is odd.


Author(s):  
Haifeng Shang

We study the Cauchy problem for the degenerate and uniformly parabolic equations with gradient term. The local existence, global existence and non-existence of solutions are obtained. In the case of global solvability, we get the exact estimates of a solution. In particular, we obtain the global existence of solutions in the limiting case.


2019 ◽  
Vol 18 (02) ◽  
pp. 333-358
Author(s):  
Ben Duan ◽  
Zhen Luo ◽  
Yan Zhou

In this paper, we consider the Cauchy problem of a viscous compressible shallow water equations with the Coriolis force term and non-constant viscosities. More precisely, the viscous coefficients are constants multiple of height, the equations are degenerate when vacuum appears. For initial data allowing vacuum, the local existence of strong solution is obtained and a blow-up criterion is established.


Sign in / Sign up

Export Citation Format

Share Document