scholarly journals Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Cui-Ping Cheng ◽  
Ruo-Fan An

<p style='text-indent:20px;'>This paper is concerned with the traveling wave fronts for a lattice dynamical system with global interaction, which arises in a single species in a 2D patchy environment with infinite number of patches connected locally by diffusion and global interaction by delay. We prove that all non-critical traveling wave fronts are globally exponentially stable in time, and the critical traveling wave fronts are globally algebraically stable by the weighted energy method combined with the comparison principle and the discrete Fourier transform.</p>

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Dongmei Yuan ◽  
Yuzhen Bai

In this paper, we consider a predator-prey model with nonlocal dispersals of two cooperative preys and one predator. We prove that the traveling wave fronts with the relatively large wave speed are exponentially stable as perturbation in some exponentially weighted spaces, when the difference between initial data and traveling wave fronts decay exponentially at negative infinity, but in other locations, the initial data can be very large. The adopted method is to use the weighted energy method and the squeezing technique with some new flavors to handle the nonlocal dispersals.


2005 ◽  
Vol 2005 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Ahmed Y. Abdallah

We investigate the existence of a global attractor and its upper semicontinuity for the infinite-dimensional lattice dynamical system of a partly dissipative reaction diffusion system in the Hilbert spacel2×l2. Such a system is similar to the discretized FitzHugh-Nagumo system in neurobiology, which is an adequate justification for its study.


Sign in / Sign up

Export Citation Format

Share Document