nonlocal effect
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 35)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zongling Zhang

Based on the nonlocal theory and the theory of saturated porous media, the mathematical and physical model and governing equations of the steady-state response of the incompressible nonlocal saturated poroelastic beam under vertical harmonic loading are established with assumption of the movement of the liquid-phase fluid only in the axial direction of the beam and considering the nonlocal effects such as particle size, pore size, and pore dynamic stress. The dynamic response of a saturated poroelastic cantilever beam with permeability at both ends under a vertical harmonic concentrated force at the free end is studied. In the frequency domain, the analytical expressions of deflection amplification factor and equivalent couple amplification factor of liquid fluid pressure are given. The effects of nonlocal coefficient τ, mechanical parameter α, and geometric parameter β on the deflection amplification factor and equivalent couple amplification factor at the midpoint of the nonlocal saturated poroelastic cantilever beam are studied. The results show that the steady-state vibration of the incompressible nonlocal saturated poroelastic cantilever beam has resonance. When the nonlocal effect is considered, the deflection amplification factor and the equivalent couple amplification factor are larger, so the influence of the nonlocal effect on the steady-state response of the beam should not be ignored. The geometric parameter β has significant effect on the peak positions of the curves of the deflection amplification factor and the equivalent couple amplification factor varying with frequency.


2021 ◽  
Author(s):  
Kun Huang ◽  
Benning Qu ◽  
Wei Xu ◽  
Ji Yao

Abstract The small-scale effect and the material nonlinearity significantly impact the mechanical properties of nanobeams. However, the combined effects of two factors have not attracted the attention of researchers. In the present paper, we proposed two new nonlocal theories to model mechanical properties of slender nanobeams for centroid locus stretching or inextensional effect respectively. Two new theories consider both the material nonlinearity and the small-scale effect induced by the nonlocal effect. The new models are used to analyze the static bending and the forced vibration for single-walled carbon nanotubes (SWCNTs). The results indicate that the stiffness softening effect induced by the material nonlinearity has more prominent impact than the nonlocal effect on SWCNT’s mechanical properties. Therefore, neglecting the material nonlinearity may cause qualitative mistakes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1780
Author(s):  
Lin Wang ◽  
Shangqing Liang ◽  
Yuanguo Zhou ◽  
Li-Gang Wang

In this work, we study the effects of nonlocality on the optical response near surface plasmon resonance of the Otto structure, and such nonlocality is considered in the hydrodynamic model. Through analyzing the dispersion relations and optical response predicted by the Drude’s and hydrodynamic model in the system, we find that the nonlocal effect is sensitive to the large propagation wavevector, and there exists a critical incident angle and thickness. The critical point moves to the smaller value when the nonlocal effect is taken into account. Before this point, the absorption of the reflected light pulse enhances; however, the situation reverses after this point. In the region between the two different critical points in the frequency scan calculated from local and nonlocal theories, the group delay of the reflected light pulse shows opposite behaviors. These results are explained in terms of the pole and zero phenomenological model in complex frequency plane. Our work may contribute to the fundamental understanding of light–matter interactions at the nanoscale and in the design of optical devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. M. Arévalo Aguilar

AbstractIn 1927, at the Solvay conference, Einstein posed a thought experiment with the primary intention of showing the incompleteness of quantum mechanics; to prove it, he employed the instantaneous nonlocal effects caused by the collapse of the wavefunction of a single particle—the spooky action at a distance–, when a measurement is done. This historical event preceded the well-know Einstein–Podolsk–Rosen criticism over the incompleteness of quantum mechanics. Here, by using the Stern–Gerlach experiment, we demonstrate how the instantaneous nonlocal feature of the collapse of the wavefunction together with the single-particle entanglement can be used to produce the nonlocal effect of steering, i.e. the single-particle steering. In the steering process Bob gets a quantum state depending on which observable Alice decides to measure. To accomplish this, we fully exploit the spreading (over large distances) of the entangled wavefunction of the single-particle. In particular, we demonstrate that the nonlocality of the single-particle entangled state allows the particle to “know” about the kind of detector Alice is using to steer Bob’s state. Therefore, notwithstanding strong counterarguments, we prove that the single-particle entanglement gives rise to truly nonlocal effects at two faraway places. This opens the possibility of using the single-particle entanglement for implementing truly nonlocal task.


Sign in / Sign up

Export Citation Format

Share Document