scholarly journals Ricci curvature of contact CR-warped product submanifolds in generalized Sasakian space forms admitting nearly Sasakian structure

2021 ◽  
Vol 6 (3) ◽  
pp. 2132-2151
Author(s):  
Ibrahim Al-Dayel ◽  
◽  
Meraj Ali Khan ◽  
Filomat ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 125-146
Author(s):  
Meraj Khan ◽  
Cenep Ozel

The objective of this paper is to achieve the inequality for Ricci curvature of a contact CR-warped product submanifold isometrically immersed in a generalized Sasakian space form admitting a trans-Sasakian structure in the expressions of the squared norm of mean curvature vector and warping function. We provide numerous physical applications of the derived inequalities. Finally, we prove that under a certain condition the base manifold is isometric to a sphere with a constant sectional curvature.


2019 ◽  
Vol 17 (01) ◽  
pp. 2050009
Author(s):  
Meraj Ali Khan ◽  
Ali H. Alkhaldi ◽  
Lamia Saeed Alqahtani ◽  
Kamran Khan

The objective of this paper is to study contact CR-warped product submanifolds admitting Ricci soliton in the setting of generalized Sasakian space forms with a nearly trans-Sasakian structure. More precisely, we obtain some classifications for these warped product submanifolds by using Ricci curvature and Euler–Lagrange equation


Filomat ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 3917-3930
Author(s):  
Pradip Mandal ◽  
Tanumoy Pal ◽  
Shyamal Hui

The paper deals with the study of Ricci curvature on warped product pointwise bi-slant submanifolds of Sasakian-space-form. We obtained some inequalities for such submanifold involving intrinsic invariant, namely the Ricci curvature invariant and extrinsic invariant, namely the squared mean curvature invariant. Some relations of Hamiltonian, Lagrangian and Hessian tensor of warping function are studied here.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Ibrahim Al-Dayel

The purpose of the present paper is to study the applications of Ricci curvature inequalities of warped product semi-invariant product submanifolds in terms of some differential equations. More precisely, by analyzing Bochner’s formula on these inequalities, we demonstrate that, under certain conditions, the base of these submanifolds is isometric to Euclidean space. We also look at the effects of certain differential equations on warped product semi-invariant product submanifolds and show that the base is isometric to a special type of warped product under some geometric conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Dae Ho Jin

We study lightlike hypersurfacesMof an indefinite generalized Sasakian space formM-(f1,f2,f3), with indefinite trans-Sasakian structure of type(α,β), subject to the condition that the structure vector field ofM-is tangent toM. First we study the general theory for lightlike hypersurfaces of indefinite trans-Sasakian manifold of type(α,β). Next we prove several characterization theorems for lightlike hypersurfaces of an indefinite generalized Sasakian space form.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amira A. Ishan

The present paper studies the applications of Obata’s differential equations on the Ricci curvature of the pointwise semislant warped product submanifolds. More precisely, by analyzing Obata’s differential equations on pointwise semislant warped product submanifolds, we demonstrate that, under certain conditions, the base of these submanifolds is isometric to a sphere. We also look at the effects of certain differential equations on pointwise semislant warped product submanifolds and show that the base is isometric to a special type of warped product under some geometric conditions.


2002 ◽  
Vol 72 (2) ◽  
pp. 247-256 ◽  
Author(s):  
Ion Mihai

AbstractRecently, Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. Afterwards, we dealt with similar problems for submanifolds in complex space forms.In the present paper, we obtain sharp inequalities between the Ricci curvature and the squared mean curvature for submanifolds in Sasakian space forms. Also, estimates of the scalar curvature and the k-Ricci curvature respectively, in terms of the squared mean curvature, are proved.


Sign in / Sign up

Export Citation Format

Share Document