Contact CR-Warped Product of Submanifolds of the Generalized Sasakian Space Forms Admitting a Nearly Trans-Sasakian Structure

2019 ◽  
Vol 70 (10) ◽  
pp. 1635-1648
Author(s):  
M. A. Khan
Filomat ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 125-146
Author(s):  
Meraj Khan ◽  
Cenep Ozel

The objective of this paper is to achieve the inequality for Ricci curvature of a contact CR-warped product submanifold isometrically immersed in a generalized Sasakian space form admitting a trans-Sasakian structure in the expressions of the squared norm of mean curvature vector and warping function. We provide numerous physical applications of the derived inequalities. Finally, we prove that under a certain condition the base manifold is isometric to a sphere with a constant sectional curvature.


2019 ◽  
Vol 17 (01) ◽  
pp. 2050009
Author(s):  
Meraj Ali Khan ◽  
Ali H. Alkhaldi ◽  
Lamia Saeed Alqahtani ◽  
Kamran Khan

The objective of this paper is to study contact CR-warped product submanifolds admitting Ricci soliton in the setting of generalized Sasakian space forms with a nearly trans-Sasakian structure. More precisely, we obtain some classifications for these warped product submanifolds by using Ricci curvature and Euler–Lagrange equation


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Dae Ho Jin

We study lightlike hypersurfacesMof an indefinite generalized Sasakian space formM-(f1,f2,f3), with indefinite trans-Sasakian structure of type(α,β), subject to the condition that the structure vector field ofM-is tangent toM. First we study the general theory for lightlike hypersurfaces of indefinite trans-Sasakian manifold of type(α,β). Next we prove several characterization theorems for lightlike hypersurfaces of an indefinite generalized Sasakian space form.


2022 ◽  
Vol 40 ◽  
pp. 1-11
Author(s):  
Meraj Ali Khan

This paper studies the contact CR-warped product submanifolds of a generalized Sasakian space form admitting a nearly cosymplectic structure. Some inequalities for the existence of these types of warped product submanifolds are established, the obtained inequalities generalize the results that have acquired in \cite{atceken14}. Moreover, we also estimate another inequality for the second fundamental form in the expressions of the warping function, this inequality also generalizes the inequalities that have obtained in \cite{ghefari19}. In addition, we also explore the equality cases.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Meraj Ali Khan ◽  
Ibrahim Al-dayel

The biwarped product submanifolds generalize the class of product submanifolds and are particular case of multiply warped product submanifolds. The present paper studies the biwarped product submanifolds of the type S T × ψ 1 S ⊥ × ψ 2 S θ in Sasakian space forms S ¯ c , where S T , S ⊥ , and S θ are the invariant, anti-invariant, and pointwise slant submanifolds of S ¯ c . Some characterizing inequalities for the existence of such type of submanifolds are proved; besides these inequalities, we also estimated the norm of the second fundamental form.


2021 ◽  
Vol 2021 ◽  
pp. 1-15 ◽  
Author(s):  
Fatemah Mofarreh ◽  
Akram Ali ◽  
Nadia Alluhaibi ◽  
Olga Belova

In the present paper, we establish a Chen–Ricci inequality for a C-totally real warped product submanifold M n of Sasakian space forms M 2 m + 1 ε . As Chen–Ricci inequality applications, we found the characterization of the base of the warped product M n via the first eigenvalue of Laplace–Beltrami operator defined on the warping function and a second-order ordinary differential equation. We find the necessary conditions for a base B of a C-totally real-warped product submanifold to be an isometric to the Euclidean sphere S p .


Sign in / Sign up

Export Citation Format

Share Document