scholarly journals Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals

2021 ◽  
Vol 6 (10) ◽  
pp. 10679-10695
Author(s):  
Wenbing Sun ◽  
◽  
Rui Xu

<abstract><p>In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities.</p></abstract>


2021 ◽  
Vol 7 (3) ◽  
pp. 3939-3958
Author(s):  
Thanin Sitthiwirattham ◽  
◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Sotiris K. Ntouyas ◽  
...  

<abstract><p>In this paper, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions using generalized fractional integrals. Since we are using generalized fractional integrals to establish these inequalities, therefore we obtain some new inequalities of Ostrowski type for Riemann-Liouville fractional integrals and $ k $-Riemann-Liouville fractional integrals in special cases. Finally, we give some applications to special means of real numbers for newly established inequalities.</p></abstract>



2018 ◽  
Vol 38 (1) ◽  
pp. 101-116 ◽  
Author(s):  
Muharrem Tomar ◽  
Praveen Agarwal ◽  
Junesang Choi

We aim to  establish certain generalized Hermite-Hadamard's inequalities for generalized convex functions via local fractional integral. As special cases of some of the results presented here, certain interesting inequalities involving generalized arithmetic and logarithmic means are obtained.



Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 845 ◽  
Author(s):  
Xia Wu ◽  
JinRong Wang ◽  
and Jialu Zhang

In this paper, we establish three fundamental integral identities by the first- and second-order derivatives for a given function via the fractional integrals with exponential kernel. With the help of these new fractional integral identities, we introduce a few interesting Hermite–Hadamard-type inequalities involving left-sided and right-sided fractional integrals with exponential kernels for convex functions. Finally, some applications to special means of real number are presented.



2021 ◽  
Vol 4 (2) ◽  
pp. 12-28
Author(s):  
Naila Mehreen ◽  
◽  
Matloob Anwar ◽  

The aim of this paper is to establish the Hermite-Hadamard-Fejér type inequalities for co-ordinated harmonically convex functions via Katugampola fractional integral. We provide Hermite-Hadamard-Fejér inequalities for harmonically convex functions via Katugampola fractional integral in one dimension.



2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
M. Yussouf ◽  
G. Farid ◽  
K. A. Khan ◽  
Chahn Yong Jung

In this paper, generalized versions of Hadamard and Fejér–Hadamard type fractional integral inequalities are obtained. By using generalized fractional integrals containing Mittag-Leffler functions, some well-known results for convex and harmonically convex functions are generalized. The results of this paper are connected with various published fractional integral inequalities.



Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 807 ◽  
Author(s):  
Saima Rashid ◽  
Thabet Abdeljawad ◽  
Fahd Jarad ◽  
Muhammad Aslam Noor

In the present paper, we investigate some Hermite-Hadamard ( HH ) inequalities related to generalized Riemann-Liouville fractional integral ( GRLFI ) via exponentially convex functions. We also show the fundamental identity for GRLFI having the first order derivative of a given exponentially convex function. Monotonicity and exponentially convexity of functions are used with some traditional and forthright inequalities. In the application part, we give examples and new inequalities for the special means.



2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yu-Ming Chu ◽  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javad ◽  
Awais Gul Khan

The goal of this paper is to derive some new variants of Simpson’s inequality using the class of n-polynomial convex functions of higher order. To obtain the main results of the paper, we first derive a new generalized fractional integral identity utilizing the concepts of Katugampola fractional integrals. This new fractional integral identity will serve as an auxiliary result in the development of the main results of this paper.



2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Saad Ihsan Butt ◽  
Praveen Agarwal ◽  
Saba Yousaf ◽  
Juan L. G. Guirao

AbstractIn this paper, we present a generalized Jensen-type inequality for generalized harmonically convex function on the fractal sets, and a generalized Jensen–Mercer inequality involving local fractional integrals is obtained. Moreover, we establish some generalized Jensen–Mercer-type local fractional integral inequalities for harmonically convex function. Also, we obtain some generalized related results using these inequalities on the fractal space. Finally, we give applications of generalized means and probability density function.



2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Miguel Vivas-Cortez ◽  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javed ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

In this paper, we introduce the notion of uniform harmonic χ -convex functions. We show that this class relates several other unrelated classes of uniform harmonic convex functions. We derive a new version of Hermite-Hadamard’s inequality and its fractional analogue. We also derive a new fractional integral identity using Caputo-Fabrizio fractional integrals. Utilizing this integral identity as an auxiliary result, we obtain new fractional Dragomir-Agarwal type of inequalities involving differentiable uniform harmonic χ -convex functions. We discuss numerous new special cases which show that our results are quite unifying. Finally, in order to show the significance of the main results, we discuss some applications to means of positive real numbers.



Sign in / Sign up

Export Citation Format

Share Document