scholarly journals New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative

2021 ◽  
Vol 7 (1) ◽  
pp. 1074-1094
Author(s):  
Wei Zhang ◽  
◽  
Jifeng Zhang ◽  
Jinbo Ni

<abstract><p>In this paper, we present new Lyapunov-type inequalities for Hilfer-Katugampola fractional differential equations. We first give some unique properties of the Hilfer-Katugampola fractional derivative, and then by using these new properties we convert the multi-point boundary value problems of Hilfer-Katugampola fractional differential equations into the equivalent integral equations with corresponding Green's functions, respectively. Finally, we make use of the Banach's contraction principle to derive the desired results, and give a series of corollaries to show that the current results extend and enrich the previous results in the literature.</p></abstract>

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Caixia Guo ◽  
Jianmin Guo ◽  
Ying Gao ◽  
Shugui Kang

This paper is concerned with the two-point boundary value problems of nonlinear finite discrete fractional differential equations. On one hand, we discuss some new properties of the Green function. On the other hand, by using the main properties of Green function and the Krasnoselskii fixed point theorem on cones, some sufficient conditions for the existence of at least one or two positive solutions for the boundary value problem are established.


Sign in / Sign up

Export Citation Format

Share Document