scholarly journals Heat diffusion in a channel under white noise modeling of turbulence

2021 ◽  
Vol 4 (4) ◽  
pp. 1-21
Author(s):  
Franco Flandoli ◽  
◽  
Eliseo Luongo

<abstract><p>A passive scalar equation for the heat diffusion and transport in an infinite channel is studied. The velocity field is white noise in time, modelling phenomenologically a turbulent fluid. Under the driving effect of a heat source, the phenomenon of eddy dissipation is investigated: the solution is close, in a weak sense, to the stationary deterministic solution of the heat equation with augmented diffusion coefficients.</p></abstract>

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1251
Author(s):  
Wensheng Wang

We investigate spatial moduli of non-differentiability for the fourth-order linearized Kuramoto–Sivashinsky (L-KS) SPDEs and their gradient, driven by the space-time white noise in one-to-three dimensional spaces. We use the underlying explicit kernels and symmetry analysis, yielding spatial moduli of non-differentiability for L-KS SPDEs and their gradient. This work builds on the recent works on delicate analysis of regularities of general Gaussian processes and stochastic heat equation driven by space-time white noise. Moreover, it builds on and complements Allouba and Xiao’s earlier works on spatial uniform and local moduli of continuity of L-KS SPDEs and their gradient.


1991 ◽  
Vol 63 (1-2) ◽  
pp. 305-313 ◽  
Author(s):  
T. C. Lipscombe ◽  
A. L. Frenkel ◽  
D. ter Haar

1949 ◽  
Vol 2 (4) ◽  
pp. 451 ◽  
Author(s):  
AA Townsend

Extending previous work on turbulent diffusion in the wake of a circular-cylinder, a series of measurements have been made of the turbulent transport of mean stream momentum, turbulent energy, and heat in the wake of a cylinder of 0.169 cm. diameter, placed in an air-stream of velocity 1280 cm. sec.-1. It has been possible to extend the measurements to 960 diameters down-stream from the cylinder, and it 1s found that, at distances in excess of 600 diameters, the requirements of dynamical similarity are very nearly satisfied. To account for the observed rates of transport of turbulent energy and heat, it is necessary that only part of this transport be due to bulk convection by the slow large-scale motion of the jets of turbulent fluid emitted by the central, fully turbulent core of the wake, which had been supposed previously to perform most of the transport. The remainder of the transport is carried out by the small-scale diffusive motion of the turbulent eddies within the jets, and may be described by assigning diffusion coefficients to the turbulent fluid. It is found that the diffusion coefficients for momentum and heat are approximately equal, but that for turbulent energy is considerably smaller. On the basis of these hypotheses, it is possible to calculate $he form of the mean velocity distribution in good agreement with experiment, and to give a qualitative explanation of the apparently more rapid diffusion of heat.


1974 ◽  
Vol 64 (4) ◽  
pp. 737-762 ◽  
Author(s):  
Robert H. Kraichnan

The stretching of line elements, surface elements and wave vectors by a random, isotropic, solenoidal velocity field in D dimensions is studied. The rates of growth of line elements and (D – 1)-dimensional surface elements are found to be equal if the statistics are invariant to velocity reversal. The analysis is applied to convection of a sparse distribution of sheets of passive scalar in a random straining field whose correlation scale is large compared with the sheet size. This is Batchelor's (1959) κ−1 spectral regime. Some exact analytical solutions are found when the velocity field varies rapidly in time. These include the dissipation spectrum and a joint probability distribution that describes the simultaneous effect of Stretching and molecular diffusivity κ on the amplitude profile of a sheet. The latter leads to probability distributions of the scalar field and its space derivatives. For a growing κ−1 range at zero κ, these derivatives have essentially lognormal statistics. In the steady-state κ−1 regime at κ > 0, intermittencies measured by moment ratios are much smaller than for lognormal statistics, and they increase less rapidly with the order of the derivative than in the κ = 0 case. The κ > 0 distributions have singularities a t zero amplitude, due to a background of highly diffused sheets. The results do not depend strongly on D. But as D → ∞, temporal fluctuations in the stretching rates become negligible and Batchelor's (1959) constant-strain dissipation spectrum is recovered.


Sign in / Sign up

Export Citation Format

Share Document