correlation time
Recently Published Documents


TOTAL DOCUMENTS

387
(FIVE YEARS 36)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
L. B. Ryashko ◽  
A. N. Pisarchik

In this paper, effects of coloured noise on the stochastic excitement in a model of the thermochemical flow reactor are studied. Transport phenomena associated with noise-induced generation of large-amplitude oscillations are investigated depending on the correlation time of coloured noise. We study how probability of the noise-induced excitement is related to the stochastic sensitivity of the system to coloured noise with certain correlation characteristics. Parameter zones of the high stochastic sensitivity are found and discussed in connection with occurrence of resonance. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2021 ◽  
Author(s):  
Li Yi-Wei ◽  
Xu Peng-Fei ◽  
Yang Yong-Ge

Abstract The nano-friction phenomenon in a one-dimensional Frenkel-Kontorova model under Gaussian colored noise is investigated by using the molecular dynamic simulation method. The role of colored noise is analyzed through the inclusion of a stochastic force via a Langevin molecular dynamics method. Via the stochastic Runge-Kutta algorithm, the relationship between different parameter values of the Gaussian colored noise (the noise intensity and the correlation time) and the nano-friction phenomena such as hysteresis, the maximum static friction force is separately studied here. Similar results are obtained from the two geometrically opposed ideal cases: incommensurate and commensurate interfaces. It was found that the noise strongly influences the hysteresis and maximum static friction force and with an appropriate external driving force, the introduction of noise can accelerate the motion of the system, making the atoms escape from the substrate potential well more easily. Interestingly, suitable correlation time and noise intensity give rise to super-lubricity. It is noteworthy that the difference between the two circumstances lies in the fact that the effect of the noise is much stronger on triggering the motion of the FK model for the commensurate interface than that for the Incommensurate interface.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 549
Author(s):  
Dmitry Zimnyakov ◽  
Marina Alonova ◽  
Ekaterina Ushakova ◽  
Olga Ushakova ◽  
Anna Isaeva ◽  
...  

Polylactide foaming as the key stage in laboratory preparation of highly porous biocompatible matrices used as scaffold prototypes was monitored based the effect of dynamic light scattering in expanding polylactide foams. Intensity fluctuations of scattered laser radiation in the course of foam expansion were analyzed using ensemble-averaged estimates of the speckle lifetime within a running window in the time domain. It was found that, in contrast to the commonly used correlation time of intensity fluctuations, the values of the average speckle lifetime are invariant with respect to the type of dynamics of phase fluctuations of partial components in scattered radiation. This makes it possible to relate this parameter to microscopic mobility of interphase boundaries in the foam in the absence of a priori information on the law of motion relating these boundaries at the microscopic level. The proposed approach in combination with the developed phenomenological model describing the relationship between the average speckle lifetime and the current values of the foam volume, as well as its first-time derivative made it possible to interpret the features of foam structure formation.


Author(s):  
Sebastian Smyk ◽  
Vitali Telezki ◽  
Josef Riepl ◽  
Johannes Hayes ◽  
Stefan Klumpp

AbstractThe fluctuations experienced by magnetic microswimmers in a magnetic field often have non-thermal contributions, in particular in the case of biological swimmers such as magnetotactic bacteria. Here we study a model for an active self-propelled particle subject to correlated internal noise as a model for the active, non-thermal noise contribution and determine the effect of the correlation time on the diffusion of the swimmer and on its orientation in a magnetic field. A description in terms of an effective temperature is possible, but has limitations.


2021 ◽  
Author(s):  
Krishna Kishor Dey ◽  
Manasi Ghosh

Abstract An azole antifungal agent, ketoconazole, is widely used in the treatment of mucosal fungal infections related to AIDS immunosuppression, organ transplantation, and cancer chemotherapy. The structure and dynamics of ketoconazole are thoroughly studied by chemical shift anisotropy tensor and site-specific spin-lattice relaxation time measurements. The molecular correlation time at crystallographically different carbon sites is calculated by considering that the spin-lattice relaxation mechanism for the 13C nucleus is mainly governed by chemical shift anisotropy interaction and hetero-nuclear dipole-dipole coupling. The CSA parameters at the crystallographically distinct sites of ketoconazole are determined by two-dimensional phase adjusted spinning sideband (2D PASS) cross-polarization magic angle spinning (CP-MAS) solid-state NMR experiment. The site-specific spin-lattice relaxation time is measured by the Torchia CP experiment. The spin-lattice relaxation rate is slow for all the carbon nuclei sites except C2, C3, C4, C5, and C26 carbon nuclei reside on the piperazine ring and the methyl group. It suggests the close-pack arrangement of the molecule due to π-π stacking interaction. The molecular correlation time of all the carbon atoms reside on the benzene ring, 1,3-dioxolane ring, imidazole ring, and the 2,4-dichlorobenzene ring is of the order of 10-4 s, while it is of the order of 10-7 s for carbon atoms reside on the piperazine ring. The CSA parameters of the carbon nuclei on the piperazine ring (C2, C3, C4, C5), and the methyl group (C26) are very low compared to other carbon nuclei. The CSA parameters are very high for carbon nuclei reside on the benzene ring, imidazole ring, and the 2,4-dichlorobenzene ring due to the presence of π-electrons. A huge variation of the spin-lattice relaxation time and the molecular correlation time are observed for numerous carbon nuclei situated on the side-chain of ketoconazole. The spin-lattice relaxation time varies from 500 s to 8 s, and the molecular correlation time varies in the range of 10-4s to 10-7s. These types of investigations portrayed the correlation between the structure and dynamics of the antifungal drug ketoconazole, which will help to develop the advanced antifungal drugs. Additionally, the CSA information of the drug molecules will be immensely useful for NMR crystallography.


Radio Science ◽  
2020 ◽  
Vol 55 (12) ◽  
Author(s):  
Victoriya V. Forsythe ◽  
Irfan Azeem ◽  
Geoff Crowley ◽  
Roman A. Makarevich ◽  
Cheng Wang

Sign in / Sign up

Export Citation Format

Share Document