scholarly journals Partitioning planar graphs with girth at least $ 9 $ into an edgeless graph and a graph with bounded size components

2021 ◽  
Vol 1 (3) ◽  
pp. 136-144
Author(s):  
Chunyu Tian ◽  
◽  
Lei Sun

<abstract><p>In this paper, we study the problem of partitioning the vertex set of a planar graph with girth restriction into parts, also referred to as color classes, such that each part induces a graph with components of bounded order. An ($ \mathcal{I} $, $ \mathcal{O}_{k} $)-partition of a graph $ G $ is the partition of $ V(G) $ into two non-empty subsets $ V_{1} $ and $ V_{2} $, such that $ G[V_{1}] $ is an edgeless graph and $ G[V_{2}] $ is a graph with components of order at most $ k $. We prove that every planar graph with girth 9 and without intersecting $ 9 $-face admits an ($ \mathcal{I} $, $ \mathcal{O}_{6} $)-partition. This improves a result of Choi, Dross and Ochem (2020) which says every planar graph with girth at least $ 9 $ admits an ($ \mathcal{I} $, $ \mathcal{O}_{9} $)-partition.</p></abstract>

10.37236/3509 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
M. Montassier ◽  
P. Ochem

A graph $G$ is $(d_1,...,d_l)$-colorable if the vertex set of $G$ can be partitioned into subsets $V_1,\ldots ,V_l$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \leq i \leq l$. In this paper, we focus on complexity aspects of such colorings when $l=2,3$. More precisely, we prove that, for any fixed integers $k,j,g$ with $(k,j) \neq (0,0)$ and $g\geq3$, either every planar graph with girth at least $g$ is $(k,j)$-colorable or it is NP-complete to determine whether a planar graph with girth at least $g$ is $(k,j)$-colorable. Also, for any fixed integer $k$, it is NP-complete to determine whether a planar graph that is either $(0,0,0)$-colorable or non-$(k,k,1)$-colorable is $(0,0,0)$-colorable. Additionally, we exhibit non-$(3,1)$-colorable planar graphs with girth 5 and non-$(2,0)$-colorable planar graphs with girth 7. 


10.37236/9391 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Zdeněk Dvořák ◽  
Carl Feghali

The reconfiguration graph $R_k(G)$ for the $k$-colorings of a graph~$G$ has as vertex set the set of all possible proper $k$-colorings of $G$ and two colorings are adjacent if they differ in the color of exactly one vertex. A result of Bousquet and Perarnau (2016) regarding graphs of bounded degeneracy implies that if $G$ is a planar graph with $n$ vertices, then $R_{12}(G)$ has diameter at most $6n$. We improve on the number of colors, showing that $R_{10}(G)$ has diameter at most $8n$ for every planar graph $G$ with $n$ vertices.


d'CARTESIAN ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 103
Author(s):  
Arthur Wulur ◽  
Benny Pinontoan ◽  
Mans Mananohas

A graph G consists of non-empty set of vertex/vertices (also called node/nodes) and the set of lines connecting two vertices called edge/edges. The vertex set of a graph G is denoted by V(G) and the edge set is denoted by E(G). A Rectilinear Monotone r-Regular Planar Graph is a simple connected graph that consists of vertices with same degree and horizontal or diagonal straight edges without vertical edges and edges crossing. This research shows that there are infinite family of rectilinear monotone r-regular planar graphs for r = 3and r = 4. For r = 5, there are two drawings of rectilinear monotone r-regular planar graphs with 12 vertices and 16 vertices. Keywords: Monotone Drawings, Planar Graphs, Rectilinear Graphs, Regular Graphs


2020 ◽  
Vol 3 (2) ◽  
pp. 70
Author(s):  
Emily L Casinillo ◽  
Leomarich F Casinillo

<p>Let G=(V(G), E(G)) be a connected graph where V(G) is a finite nonempty set called vertex-set of G, and  E(G) is a set of unordered pairs {u, v} of distinct elements from  V(G) called the edge-set of G. If  is a connected acyclic graph or a connected graph with no cycles, then it is called a tree graph. A binary tree Tl with l levels is complete if all levels except possibly the last are completely full, and the last level has all its nodes to the left side. If we form a path on each level of a full and complete binary tree, then the graph is now called full and complete binary planar graph and it is denoted as Bn, where n is the level of the graph. This paper introduced a new planar graph which is derived from binary tree graphs. In addition, a combinatorial formula for counting its vertices, faces, and edges that depends on the level of the graph was developed.</p>


10.37236/7320 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Margit Voigt ◽  
Arnfried Kemnitz

The Four Color Theorem states that every planar graph is properly 4-colorable. Moreover, it is well known that there are planar graphs that are non-$4$-list colorable. In this paper we investigate a problem combining proper colorings and list colorings. We ask whether the vertex set of every planar graph can be partitioned into two subsets where one subset induces a bipartite graph and the other subset induces a $2$-list colorable graph. We answer this question in the negative strengthening the result on non-$4$-list colorable planar graphs.


1996 ◽  
Vol 05 (06) ◽  
pp. 877-883 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
TATSUYA TSUKAMOTO

For each odd number n, we describe a regular projection of a planar graph such that every spatial graph obtained by giving it over/under information of crossing points contains a (2, n)-torus knot. We also show that for any spatial graph H, there is a regular projection of a (possibly nonplanar) graph such that every spatial graph obtained from it contains a subgraph that is ambient isotopic to H.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050034
Author(s):  
Yuehua Bu ◽  
Xiaofang Wang

A [Formula: see text]-hued coloring of a graph [Formula: see text] is a proper [Formula: see text]-coloring [Formula: see text] such that [Formula: see text] for any vertex [Formula: see text]. The [Formula: see text]-hued chromatic number of [Formula: see text], written [Formula: see text], is the minimum integer [Formula: see text] such that [Formula: see text] has a [Formula: see text]-hued coloring. In this paper, we show that [Formula: see text] if [Formula: see text] and [Formula: see text] is a planar graph without [Formula: see text]-cycles or if [Formula: see text] is a planar graph without [Formula: see text]-cycles and no [Formula: see text]-cycle is intersect with [Formula: see text]-cycles, [Formula: see text], then [Formula: see text], where [Formula: see text].


10.37236/2589 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Danjun Huang ◽  
Weifan Wang

In this paper, we prove that every planar graph of maximum degree six without 7-cycles is class one.


10.37236/5309 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

The 4 Color Theorem (4CT) implies that every $n$-vertex planar graph has an independent set of size at least $\frac{n}4$; this is best possible, as shown by the disjoint union of many copies of $K_4$.  In 1968, Erdős asked whether this bound on independence number could be proved more easily than the full 4CT. In 1976 Albertson showed (independently of the 4CT) that every $n$-vertex planar graph has an independent set of size at least $\frac{2n}9$. Until now, this remained the best bound independent of the 4CT. Our main result improves this bound to $\frac{3n}{13}$.


Sign in / Sign up

Export Citation Format

Share Document