scholarly journals A Note on Not-4-List Colorable Planar Graphs

10.37236/7320 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Margit Voigt ◽  
Arnfried Kemnitz

The Four Color Theorem states that every planar graph is properly 4-colorable. Moreover, it is well known that there are planar graphs that are non-$4$-list colorable. In this paper we investigate a problem combining proper colorings and list colorings. We ask whether the vertex set of every planar graph can be partitioned into two subsets where one subset induces a bipartite graph and the other subset induces a $2$-list colorable graph. We answer this question in the negative strengthening the result on non-$4$-list colorable planar graphs.

10.37236/3228 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Naoki Matsumoto

A graph $G$ is uniquely $k$-colorable if the chromatic number of $G$ is $k$ and $G$ has only one $k$-coloring up to permutation of the colors. A uniquely $k$-colorable graph $G$ is edge-critical if $G-e$ is not a uniquely $k$-colorable graph for any edge $e\in E(G)$. In this paper, we prove that if $G$ is an edge-critical uniquely $3$-colorable planar graph, then $|E(G)|\leq \frac{8}{3}|V(G)|-\frac{17}{3}$. On the other hand, there exists an infinite family of edge-critical uniquely 3-colorable planar graphs with $n$ vertices and $\frac{9}{4}n-6$ edges. Our result gives a first non-trivial upper bound for $|E(G)|$.


10.37236/6738 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Hojin Choi ◽  
Young Soo Kwon

In this paper, we introduce a new variation of list-colorings. For a graph $G$  and for a given nonnegative integer $t$, a $t$-common list assignment of $G$ is a mapping $L$ which assigns each vertex $v$ a set $L(v)$ of colors such that given set of $t$ colors belong to $L(v)$ for every $v\in V(G)$. The $t$-common list chromatic number of $G$ denoted by $ch_t(G)$ is defined as the minimum positive integer $k$ such that there exists an $L$-coloring of $G$ for every $t$-common list assignment $L$ of $G$, satisfying $|L(v)| \ge k$ for every vertex $v\in V(G)$. We show that for all positive integers $k, \ell$ with $2 \le k \le \ell$ and for any positive integers $i_1 , i_2, \ldots, i_{k-2}$ with $k \le i_{k-2} \le \cdots \le i_1 \le \ell$, there exists a graph $G$ such that $\chi(G)= k$, $ch(G) =  \ell$ and $ch_t(G) = i_t$ for every $t=1, \ldots, k-2$. Moreover, we consider the $t$-common list chromatic number of planar graphs. From the four color theorem and the result of Thomassen (1994), for any $t=1$ or $2$, the sharp upper bound of $t$-common list chromatic number of planar graphs is $4$ or $5$. Our first step on $t$-common list chromatic number of planar graphs is to find such a sharp upper bound. By constructing a planar graph $G$ such that $ch_1(G) =5$, we show that the sharp upper bound for $1$-common list chromatic number of planar graphs is $5$. The sharp upper bound of $2$-common list chromatic number of planar graphs is still open. We also suggest several questions related to $t$-common list chromatic number of planar graphs.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Yan Li ◽  
Xin Zhang

An outer-1-planar graph is a graph admitting a drawing in the plane so that all vertices appear in the outer region of the drawing and every edge crosses at most one other edge. This paper establishes the local structure of outer-1-planar graphs by proving that each outer-1-planar graph contains one of the seventeen fixed configurations, and the list of those configurations is minimal in the sense that for each fixed configuration there exist outer-1-planar graphs containing this configuration that do not contain any of another sixteen configurations. There are two interesting applications of this structural theorem. First of all, we conclude that every (resp. maximal) outer-1-planar graph of minimum degree at least 2 has an edge with the sum of the degrees of its two end-vertices being at most 9 (resp. 7), and this upper bound is sharp. On the other hand, we show that the list 3-dynamic chromatic number of every outer-1-planar graph is at most 6, and this upper bound is best possible.


10.37236/3509 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
M. Montassier ◽  
P. Ochem

A graph $G$ is $(d_1,...,d_l)$-colorable if the vertex set of $G$ can be partitioned into subsets $V_1,\ldots ,V_l$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \leq i \leq l$. In this paper, we focus on complexity aspects of such colorings when $l=2,3$. More precisely, we prove that, for any fixed integers $k,j,g$ with $(k,j) \neq (0,0)$ and $g\geq3$, either every planar graph with girth at least $g$ is $(k,j)$-colorable or it is NP-complete to determine whether a planar graph with girth at least $g$ is $(k,j)$-colorable. Also, for any fixed integer $k$, it is NP-complete to determine whether a planar graph that is either $(0,0,0)$-colorable or non-$(k,k,1)$-colorable is $(0,0,0)$-colorable. Additionally, we exhibit non-$(3,1)$-colorable planar graphs with girth 5 and non-$(2,0)$-colorable planar graphs with girth 7. 


2007 ◽  
Vol 44 (3) ◽  
pp. 411-422 ◽  
Author(s):  
János Barát ◽  
Péter Varjú

A sequence of symbols a1 , a2 … is called square-free if it does not contain a subsequence of consecutive terms of the form x1 , …, xm , x1 , …, xm . A century ago Thue showed that there exist arbitrarily long square-free sequences using only three symbols. Sequences can be thought of as colors on the vertices of a path. Following the paper of Alon, Grytczuk, Hałuszczak and Riordan, we examine graph colorings for which the color sequence is square-free on any path. The main result is that the vertices of any k -tree have a coloring of this kind using O ( ck ) colors if c > 6. Alon et al. conjectured that a fixed number of colors suffices for any planar graph. We support this conjecture by showing that this number is at most 12 for outerplanar graphs. On the other hand we prove that some outerplanar graphs require at least 7 colors. Using this latter we construct planar graphs, for which at least 10 colors are necessary.


10.37236/8395 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Pierre Aboulker ◽  
Marthe Bonamy ◽  
Nicolas Bousquet ◽  
Louis Esperet

This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequential) quadratic algorithm finding such a coloring. A natural problem is to improve this complexity in the distributed setting. Using the fact that planar graphs contain linearly many vertices of degree at most 6, Goldberg, Plotkin, and Shannon obtained a deterministic distributed algorithm coloring $n$-vertex planar graphs with 7 colors in $O(\log n)$ rounds. Here, we show how to color planar graphs with 6 colors in $\text{polylog}(n)$ rounds. Our algorithm indeed works more generally in the list-coloring setting and for sparse graphs (for such graphs we improve by at least one the number of colors resulting from an efficient algorithm of Barenboim and Elkin, at the expense of a slightly worst complexity). Our bounds on the number of colors turn out to be quite sharp in general. Among other results, we show that no distributed algorithm can color every $n$-vertex planar graph with 4 colors in $o(n)$ rounds.


10.37236/9391 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Zdeněk Dvořák ◽  
Carl Feghali

The reconfiguration graph $R_k(G)$ for the $k$-colorings of a graph~$G$ has as vertex set the set of all possible proper $k$-colorings of $G$ and two colorings are adjacent if they differ in the color of exactly one vertex. A result of Bousquet and Perarnau (2016) regarding graphs of bounded degeneracy implies that if $G$ is a planar graph with $n$ vertices, then $R_{12}(G)$ has diameter at most $6n$. We improve on the number of colors, showing that $R_{10}(G)$ has diameter at most $8n$ for every planar graph $G$ with $n$ vertices.


2021 ◽  
Vol 1 (3) ◽  
pp. 136-144
Author(s):  
Chunyu Tian ◽  
◽  
Lei Sun

<abstract><p>In this paper, we study the problem of partitioning the vertex set of a planar graph with girth restriction into parts, also referred to as color classes, such that each part induces a graph with components of bounded order. An ($ \mathcal{I} $, $ \mathcal{O}_{k} $)-partition of a graph $ G $ is the partition of $ V(G) $ into two non-empty subsets $ V_{1} $ and $ V_{2} $, such that $ G[V_{1}] $ is an edgeless graph and $ G[V_{2}] $ is a graph with components of order at most $ k $. We prove that every planar graph with girth 9 and without intersecting $ 9 $-face admits an ($ \mathcal{I} $, $ \mathcal{O}_{6} $)-partition. This improves a result of Choi, Dross and Ochem (2020) which says every planar graph with girth at least $ 9 $ admits an ($ \mathcal{I} $, $ \mathcal{O}_{9} $)-partition.</p></abstract>


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Zuosong Liang ◽  
Huandi Wei

Every graph G = V , E considered in this paper consists of a finite set V of vertices and a finite set E of edges, together with an incidence function that associates each edge e ∈ E of G with an unordered pair of vertices of G which are called the ends of the edge e . A graph is said to be a planar graph if it can be drawn in the plane so that its edges intersect only at their ends. A proper k -vertex-coloring of a graph G = V , E is a mapping c : V ⟶ S ( S is a set of k colors) such that no two adjacent vertices are assigned the same colors. The famous Four Color Theorem states that a planar graph has a proper vertex-coloring with four colors. However, the current known proof for the Four Color Theorem is computer assisted. In addition, the correctness of the proof is still lengthy and complicated. In 2010, a simple O n 2 time algorithm was provided to 4-color a 3-colorable planar graph. In this paper, we give an improved linear-time algorithm to either output a proper 4-coloring of G or conclude that G is not 3-colorable when an arbitrary planar graph G is given. Using this algorithm, we can get the proper 4-colorings of 3-colorable planar graphs, planar graphs with maximum degree at most five, and claw-free planar graphs.


d'CARTESIAN ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 103
Author(s):  
Arthur Wulur ◽  
Benny Pinontoan ◽  
Mans Mananohas

A graph G consists of non-empty set of vertex/vertices (also called node/nodes) and the set of lines connecting two vertices called edge/edges. The vertex set of a graph G is denoted by V(G) and the edge set is denoted by E(G). A Rectilinear Monotone r-Regular Planar Graph is a simple connected graph that consists of vertices with same degree and horizontal or diagonal straight edges without vertical edges and edges crossing. This research shows that there are infinite family of rectilinear monotone r-regular planar graphs for r = 3and r = 4. For r = 5, there are two drawings of rectilinear monotone r-regular planar graphs with 12 vertices and 16 vertices. Keywords: Monotone Drawings, Planar Graphs, Rectilinear Graphs, Regular Graphs


Sign in / Sign up

Export Citation Format

Share Document